# Introduction to Deep Learning



#### Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

# Feature Engineering

### Machine Learning

- A form of applied statistics with
  - Increased emphasis on the use of computers to statistically estimate complicated function
  - Decreased emphasis on proving confidence intervals around these functions
- Two primary approaches
  - Frequentist estimators
  - Bayesian inference

# Types of Machine Learning Problems

- Supervised
- Unsupervised
- Other variants
  - Reinforcement learning
  - Semi-supervised

# Learning algorithm

- A ML algorithm is an algorithm that is able to learn from data
- Mitchelle (1997)
  - A computer program is said to learn from experience E with respect to some class of task T and performance measure P, if its performance at task in T as measured by P, improves with experience E.

#### Task

- A ML tasks are usually described in terms of how ML system should process an example
  - Example is a collection of features that have been quantitatively measured from some objects or events that we want the learning system process
    - Represented as  $\mathbf{x} \in \mathbb{R}^n$  where  $x_i$  is a feature
    - Feature of an image pixel values

### Common ML Task

- Classification
  - Need to predict which of the k categories some input belong to
  - Need to have a function  $f: \mathbb{R}^n \to \{1, 2, \dots, k\}$
  - y = f(x) input x is assigned category identified by y
  - Examples
    - Object identification
    - Face recognition
- Regression
  - Need to predict numeric value for some given input
  - Need to have a function  $f : \mathbb{R}^n \to \mathbb{R}$
  - Examples
    - Energy consumption
    - Amount of insurance claim

- Classification with missing inputs
  - Need to have a set of functions
  - Each function corresponds to classifying x with different subset of inputs missing
  - Examples
    - Medical diagnosis (expensive or invasive)

- Classification with missing inputs
  - Need to have a set of functions
  - Each function corresponds to classifying x with different subset of inputs missing
  - Examples
    - Medical diagnosis (expensive or invasive)
- Transcription
  - Need to convert relatively unstructured data into discrete, textual form
    - Optical character recognition
    - Speech recognition

- Classification with missing inputs
  - Need to have a set of functions
  - Each function corresponds to classifying x with different subset of inputs missing
  - Examples
    - Medical diagnosis (expensive or invasive)
- Transcription
  - Need to convert relatively unstructured data into discrete, textual form
    - Optical character recognition
    - Speech recognition
- Machine translation
  - Conversion of sequence of symbols in one language to some other language
    - Natural language processing (English to Spanish conversion)

- Structured output
  - Output is a vector with important relationship between the different elements
    - Mapping natural language sentence into a tree that describes grammatical structure
    - Pixel based image segmentation (eg. identify roads)

- Structured output
  - Output is a vector with important relationship between the different elements
    - Mapping natural language sentence into a tree that describes grammatical structure
    - Pixel based image segmentation (eg. identify roads)
- Anamoly detection
  - Observes a set of events or objects and flags if some of them are unusual
    - Fraud detection in credit card

- Structured output
  - Output is a vector with important relationship between the different elements
    - Mapping natural language sentence into a tree that describes grammatical structure
    - Pixel based image segmentation (eg. identify roads)
- Anamoly detection
  - Observes a set of events or objects and flags if some of them are unusual
    - Fraud detection in credit card
- Synthesis and sampling
  - Generate new example similar to past examples
    - Useful for media application
    - Text to speech

#### Performance measure

- Accuracy is one of the key measures
  - The proportion of examples for which the model produces correct outputs
  - Similar to error rate
    - Error rate often referred as expected 0-1 loss
- Mostly interested how ML algorithm performs on unseen data
- Choice of performance measure may not be straight forward
  - Transcription
    - Accuracy of the system at transcribing entire sequence
    - Any partial credit for some elements of the sequence are correct

# Experience

- Kind of experience allowed during learning process
  - Supervised
  - Unsupervised

#### Supervised learning

- Allowed to use labeled dataset
- Example Iris
  - Collection of measurements of different parts of Iris plant
  - Each plant means each example
  - Features
    - Sepal length/width, petal length/width
    - Also record which species the plant belong to

# Supervised learning (contd.)

- A set of labeled examples  $\langle x_1, x_2, \ldots, x_n, y \rangle$ 
  - x<sub>i</sub> are input variables
  - y output variable
- Need to find a function  $f: X_1 \times X_2 \times \ldots X_n \to Y$
- Goal is to minimize error/loss function
  - Like to minimize over all dataset
  - We have limited dataset

#### Unsupervised learning

- Learns useful properties of the structure of data set
- Unlabeled data
  - Tries to learn entire probability distribution that generated the dataset
  - Examples
    - Clustering, dimensionality reduction

#### Supervised vs Unsupervised learning

- Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
- Supervised tries to predict y from x ie. p(y|x)

#### Supervised vs Unsupervised learning

- Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
- Supervised tries to predict y from x ie. p(y|x)
- Unsupervised learning can be decomposed as supervised learning

$$p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i | x_1, x_2, \dots, x_{i-1})$$

#### Supervised vs Unsupervised learning

- Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
- Supervised tries to predict y from x ie. p(y|x)
- Unsupervised learning can be decomposed as supervised learning

$$p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i | x_1, x_2, \dots, x_{i-1})$$

Solving supervised learning using traditional unsupervised learning

$$p(y|x) = \frac{p(x,y)}{\sum_{y'} p(x,y')}$$

### Linear regression

- Prediction of the value of a continuous variable
  - Example price of a house, solar power generation in photo-voltaic cell, etc.

#### Linear regression

- Prediction of the value of a continuous variable
  - Example price of a house, solar power generation in photo-voltaic cell, etc.
- Takes a vector  $x \in \mathbb{R}^n$  and predict scalar  $y \in \mathbb{R}$ 
  - Predicted value will be represented as  $\hat{y} = w^T x$  where w is a vector of parameters
    - $x_i$  receives positive weight Increasing the value of the feature will increase the value of y
    - $x_i$  receives negative weight Increasing the value of the feature will decrease the value of y
    - Weight value is very high/large Large effect on prediction

# Performance

- Assume, we have *m* examples not used for training
  - This is known as test set

#### Performance

- Assume, we have *m* examples not used for training
  - This is known as test set
- Design matrix of inputs is  $X^{(\text{test})}$  and target output is a vector  $y^{(\text{test})}$ 
  - Performance is measured by Mean Square Error (MSE)

$$\mathsf{MSE}_{(\mathsf{test})} = \frac{1}{m} \sum_{i} \left( \hat{\boldsymbol{y}}^{(\mathsf{test})} - \boldsymbol{y}^{(\mathsf{test})} \right)_{i}^{2} = \frac{1}{m} \| \hat{\boldsymbol{y}}^{(\mathsf{test})} - \boldsymbol{y}^{(\mathsf{test})} \|_{2}^{2}$$

• Error increases when the Euclidean distance between target and prediction increases

#### Performance

- Assume, we have *m* examples not used for training
  - This is known as test set
- Design matrix of inputs is  $X^{(\text{test})}$  and target output is a vector  $y^{(\text{test})}$ 
  - Performance is measured by Mean Square Error (MSE)

$$\mathsf{MSE}_{(\mathsf{test})} = \frac{1}{m} \sum_{i} \left( \hat{\boldsymbol{y}}^{(\mathsf{test})} - \boldsymbol{y}^{(\mathsf{test})} \right)_{i}^{2} = \frac{1}{m} \| \hat{\boldsymbol{y}}^{(\mathsf{test})} - \boldsymbol{y}^{(\mathsf{test})} \|_{2}^{2}$$

- Error increases when the Euclidean distance between target and prediction increases
- The learning algorithm is allowed to gain experience from training set  $(X^{(train)}, y^{(train)})$
- One of the common ideas is to minimize MSE<sub>(train)</sub> for training set

• We have the following now

 $\nabla_w\mathsf{MSE}_{(\mathsf{train})}=0$ 

• We have the following now

 $\begin{aligned} \nabla_{w}\mathsf{MSE}_{(\mathsf{train})} &= 0 \\ \Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{\boldsymbol{y}}^{(\mathsf{train})} - \boldsymbol{y}^{(\mathsf{train})} \|_{2}^{2} &= 0 \end{aligned}$ 

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$
  

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{y}^{(\mathsf{train})} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$
  

$$\Rightarrow \quad \frac{1}{m} \nabla_{w} \| \boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{y}^{(\mathsf{train})} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_{w} \| \mathbf{X}^{(\mathsf{train})} \mathbf{w} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \nabla_{w} (\mathbf{X}^{(\mathsf{train})} \mathbf{w} - y^{(\mathsf{train})})^{T} (\mathbf{X}^{(\mathsf{train})} \mathbf{w} - y^{(\mathsf{train})}) = 0$$

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{y}^{(\mathsf{train})} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_{w} \| \boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \nabla_{w} (\boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - y^{(\mathsf{train})})^{T} (\boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - y^{(\mathsf{train})}) = 0$$

$$\Rightarrow \quad \nabla_{w} (\boldsymbol{w}^{T} \boldsymbol{X}^{(\mathsf{train})T} \boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - 2 \boldsymbol{w}^{T} \boldsymbol{X}^{(\mathsf{train})T} y^{(\mathsf{train})T} y^{(\mathsf{train})T}) = 0$$

$$\nabla_{w} \mathsf{MSE}_{(\mathrm{train})} = 0$$

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{y}^{(\mathrm{train})} - y^{(\mathrm{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_{w} \| \mathbf{X}^{(\mathrm{train})} \mathbf{w} - y^{(\mathrm{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \nabla_{w} (\mathbf{X}^{(\mathrm{train})} \mathbf{w} - y^{(\mathrm{train})})^{T} (\mathbf{X}^{(\mathrm{train})} \mathbf{w} - y^{(\mathrm{train})}) = 0$$

$$\Rightarrow \quad \nabla_{w} (\mathbf{w}^{T} \mathbf{X}^{(\mathrm{train})T} \mathbf{X}^{(\mathrm{train})} \mathbf{w} - 2\mathbf{w}^{T} \mathbf{X}^{(\mathrm{train})T} y^{(\mathrm{train})T} y^{(\mathrm{train})T}) = 0$$

$$\Rightarrow \quad 2\mathbf{X}^{(\mathrm{train})T} \mathbf{X}^{(\mathrm{train})} \mathbf{w} - 2\mathbf{X}^{(\mathrm{train})T} y^{(\mathrm{train})} = 0$$

$$\nabla_{w} \mathsf{MSE}_{(train)} = 0$$

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{y}^{(train)} - y^{(train)} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_{w} \| X^{(train)} w - y^{(train)} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \nabla_{w} (X^{(train)} w - y^{(train)})^{T} (X^{(train)} w - y^{(train)}) = 0$$

$$\Rightarrow \quad \nabla_{w} (w^{T} X^{(train)T} X^{(train)} w - 2w^{T} X^{(train)T} y^{(train)} - y^{(train)T} y^{(train)}) = 0$$

$$\Rightarrow \quad 2X^{(train)T} X^{(train)} w - 2X^{(train)T} y^{(train)} = 0$$

$$\Rightarrow \quad w = (X^{(train)T} X^{(train)})^{-1} X^{(train)} y^{(train)}$$

• We have the following now

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \nabla_{w} \frac{1}{m} \| \hat{y}^{(\mathsf{train})} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_{w} \| \boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \quad \nabla_{w} (\boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - y^{(\mathsf{train})})^{T} (\boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - y^{(\mathsf{train})}) = 0$$

$$\Rightarrow \quad \nabla_{w} (\boldsymbol{w}^{T} \boldsymbol{X}^{(\mathsf{train})T} \boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - 2\boldsymbol{w}^{T} \boldsymbol{X}^{(\mathsf{train})T} y^{(\mathsf{train})} - y^{(\mathsf{train})T} y^{(\mathsf{train})}) = 0$$

$$\Rightarrow \quad 2\boldsymbol{X}^{(\mathsf{train})T} \boldsymbol{X}^{(\mathsf{train})} \boldsymbol{w} - 2\boldsymbol{X}^{(\mathsf{train})T} y^{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \boldsymbol{w} = (\boldsymbol{X}^{(\mathsf{train})T} \boldsymbol{X}^{(\mathsf{train})})^{-1} \boldsymbol{X}^{(\mathsf{train})} y^{(\mathsf{train})}$$

• Linear regression with bias term

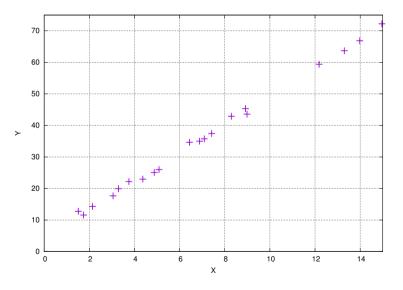
$$\hat{y} = [\mathbf{w}^{T} \quad w_0][\mathbf{x} \quad 1]^{T}$$

#### Moore-Penrose Pseudoinverse

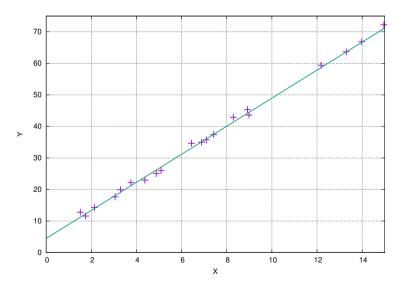
- Let  $\boldsymbol{A} \in \mathbb{R}^{n \times m}$
- Every **A** has pseudoinverse  $\mathbf{A}^+ \in \mathbb{R}^{m \times n}$  and it is unique
  - $AA^+A = A$
  - $A^+AA^+ = A^+$
  - $(\mathbf{A}\mathbf{A}^+)^T = \mathbf{A}\mathbf{A}^+$
  - $(\mathbf{A}^+\mathbf{A})^T = \mathbf{A}^+\mathbf{A}$
- $A^+ = (A^T A)^{-1} A^T$
- Example

• If 
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \end{bmatrix}^{T}$$
 then  $\mathbf{A}^{+} = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \end{bmatrix}$   
• If  $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 5 \end{bmatrix}$  then  $\mathbf{A}^{+} = \begin{bmatrix} 0.121212 & 0.515152 & -0.151515 \\ 0.030303 & -0.121212 & 0.212121 \end{bmatrix}$ 

# **Regression** example



# **Regression** example



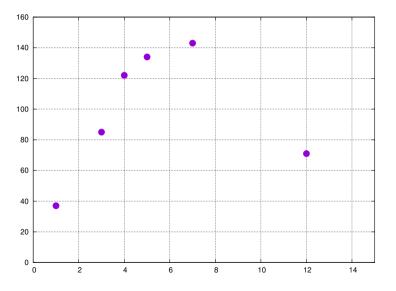
## Minimization of MSE: Gradient descent

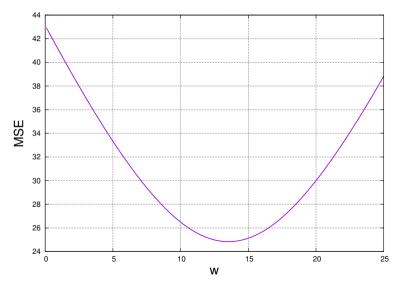
- Assuming  $MSE_{(train)} = J(w_1, w_2)$
- Target is to  $\min_{w_1,w_2} J(w_1,w_2)$
- Approach
  - Start with some w<sub>1</sub>, w<sub>2</sub>
  - Keep modifying  $w_1, w_2$  so that  $J(w_1, w_2)$  reduces till the desired accuracy is achieved

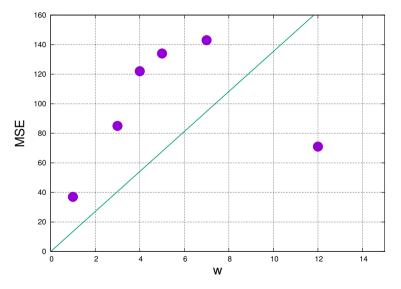
# Minimization of MSE: Gradient descent

- Assuming  $MSE_{(train)} = J(w_1, w_2)$
- Target is to  $\min_{w_1,w_2} J(w_1,w_2)$
- Approach
  - Start with some  $w_1, w_2$
  - Keep modifying  $w_1, w_2$  so that  $J(w_1, w_2)$  reduces till the desired accuracy is achieved
- Algorithm
  - Repeat the following until convergence

$$w_j = w_j - \frac{\partial}{\partial w_j} J(w_1, w_2)$$



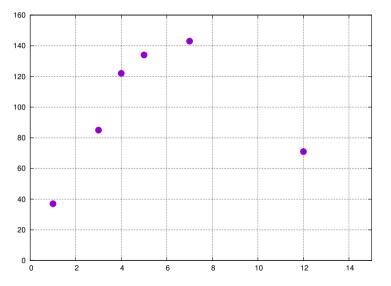


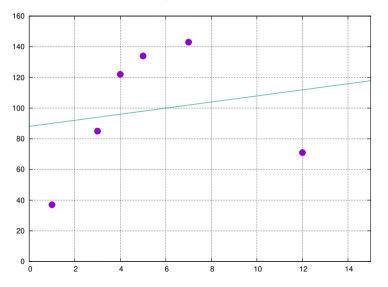


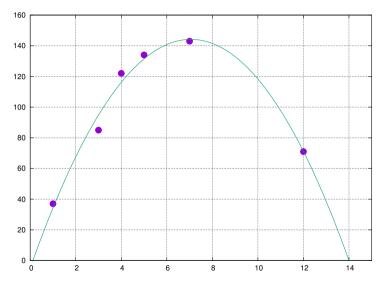
#### Error

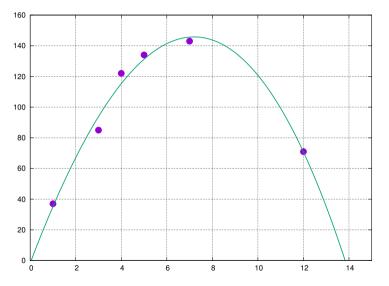
- Training error Error obtained on a training set
- Generalization error Error on unseen data
- Data assumed to be independent and identically distributed (iid)
  - Each data set are independent of each other
  - Train and test data are identically distributed
- Expected training and test error will be the same
- It is more likely that the test error is greater than or equal to the expected value of training error
- Target is to make the training error is small. Also, to make the gap between training and test error smaller

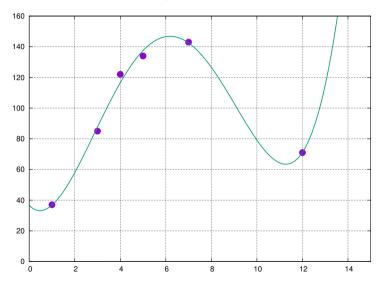
# **Regression** example

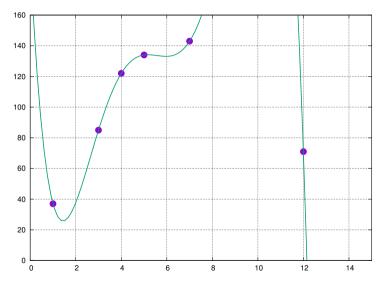


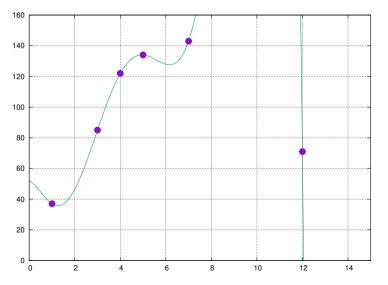






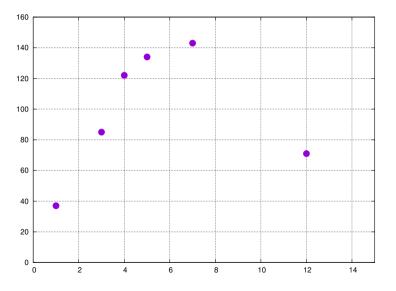




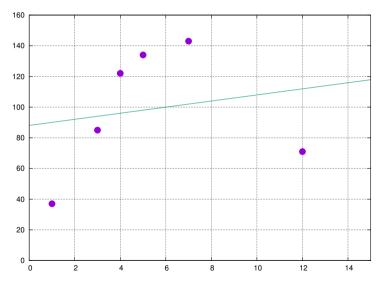


# Underfitting & Overfitting

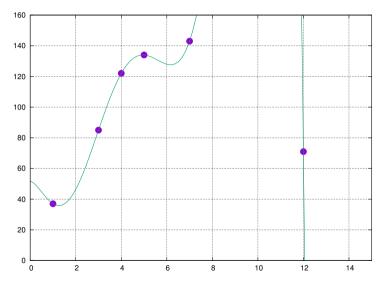
- Underfitting
  - When the model is not able to obtain sufficiently low error value on the training set
- Overfitting
  - When the gap between training set and test set error is too large



# Underfitting example

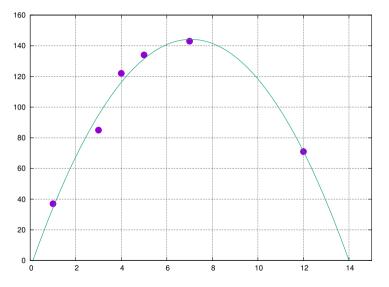


# Overfitting example



IIT Patna

# Better fit



# Capacity

- Ability to fit wide variety of functions
  - Low capacity will struggle to fit the training set
  - High capacity will can overfit by memorizing the training set
- Capacity can be controlled by choosing hypothesis space
  - A polynomial of degree 1 gives linear regression  $\hat{y} = b + wx$
  - By adding  $x^2$  term, it can learn quadratic curve  $\hat{y} = b + w_1 x + w_2 x^2$ 
    - Output is still a linear function of parameters
- Capacity of is determined by the choice of model (Representational capacity)
- Finding best function is very difficult optimization problem
  - Learning algorithm does not find the best function but reduces the training error
  - Imperfection in optimization algorithm can further reduce the capacity of model (effective capacity)

# Capacity (contd.)

- Occam's razor
  - Among equally well hypotheses, choose the simplest one
- Vapnik-Chervonenski dimension Capacity for binary classifier
  - Largest possible value of m for which a training set of m different **x** point that the classifier can label arbitrarily
- Training and test error is bounded from above by a quantity that grows as model capacity grows but shrinks as the number of training example increases
  - Bounds are usually provided for ML algorithm and rarely provided for DL
  - Capacity of deep learning model is difficult as the effective capacity is limited by optimization algorithm
    - Little knowledge on non-convex optimization

# Error vs Capacity Training error Underfitting zone Overfitting zone Generalization error Error Generalization gap **Optimal** Capacity 0 Capacity

Image source: Deep Learning Book

#### Non-parametric model

- Parametric model learns a function described by a parameter vector
  - Size of vector is finite and fixed
- Nearest neighbour regression
  - Finds out the nearest entry in training set and returns the associated value as the predicted one
  - Mathematically, for a given point x,  $\hat{y} = y_i$  where  $i = \arg \min ||X_{i,i} x||_2^2$
- Wrapping parametric algorithm inside another algorithm

#### **Bayes error**

- Ideal model is an oracle that knows the true probability distribution for data generation
- Such model can make error because of noise
  - Supervised learning
    - Mapping of **x** to **y** may be stochastic
    - y may be deterministic but x does not have all variables

• Error by an oracle in predicting from the true distribution is known as Bayes error

#### Note

- Training and generalization error varies as the size of training set varies
- Expected generalization error can never increase as the number of training example increases
- Any fixed parametric model with less than the optimal capacity will asymptote to an error value that exceeds the Bayes error
- It is possible to have optimal capacity but have large gap between training and generalization error
  - Need more training examples

## No free lunch

- Averaged over all possible data generating distribution, every classification algorithm has same error rate when classifying unseen points
- No machine learning algorithm is universally any better than any other

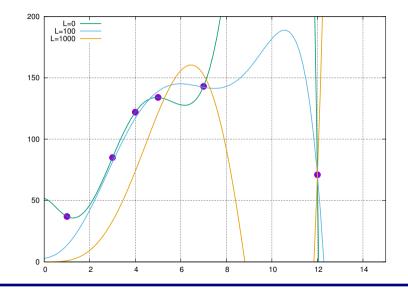
## Regularization

- A set of preferences is applied to learning algorithm so that it perform well on a specific task
- Weight decay In linear regression, preference on the weights is introduced
  - Sum of MSE and squared  $L^2$  norms of the weight is minimized ie.

 $J(\boldsymbol{w}) = \mathsf{MSE}_{train} + \lambda \boldsymbol{w}^{\mathsf{T}} \boldsymbol{w}$ 

- $\lambda = 0$  No preference
- $\lambda$  becomes large weight becomes smaller
- Regularization is intended to reduce test error not training error

# Example: Weight decay



## Hyperparameters

- Settings that are used to control the behavior of learning algorithm
  - Degree of polynomial
  - $\lambda$  for decay weight
- Hyperparameters are usually not adapted or learned on the training set

## Validation set

- Test data should not be used to choose the model as well as hyperparameters
- Validation set is constructed from training set
  - Typically 80% will be used for training and rest for validation
- Validation set may be used to train hyperparameters

## **Cross validation**

- Dividing data set into training and fixed test may result into small test set
  - For large data this is not an issue
- For small data set use k-fold cross validation
  - Partition the data in k disjoint subsets
  - On i-th trial, i-th set used as the test set and rest are treated as training set
  - Test error can be determined by averaging the test error across the k trials

## **Point estimation**

- To provide single best prediction of some quantity of interest
- Estimation of the relationship between input and output variables
- It can be single parameter or a vector of parameters
  - Weights in linear regression
- Notation: true parameter heta and estimate  $\hat{ heta}$
- Let  $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$  be set of *m* independent and identically distributed point.
- A point estimator is a function  $\hat{\theta}_m = g(x^{(1)}, x^{(2)}, \dots, x^{(m)})$ 
  - Good estimator is a function whose output is close to  ${\boldsymbol heta}$
  - $\theta$  is unknown but fixed
  - $\hat{\theta}$  depends on data

#### Bias

- Difference between this estimator's expected value and the true value of the parameter being estimated
  - $\mathsf{bias}(\hat{\theta}_m) = \mathbb{E}(\hat{\theta}_m) \theta$
- An estimator will be said unbiased if  $bias(\hat{\theta}_m) = 0$ 
  - $\mathbb{E}(\hat{\theta}_m) = \theta$
- An estimator will be asymptotically unbiased if  $\lim_{m \to \infty} \mathrm{bias}(\hat{ heta}_m) = 0$

Let us consider a set of samples {x<sup>(1)</sup>, x<sup>(2)</sup>,...,x<sup>(m)</sup>} that are independently and identically distributed according to p(x<sup>(i)</sup>) = N(x<sup>(i)</sup>; μ, σ<sup>2</sup>) ∀i = 1, 2, ..., m

- Let us consider a set of samples {x<sup>(1)</sup>, x<sup>(2)</sup>,...,x<sup>(m)</sup>} that are independently and identically distributed according to p(x<sup>(i)</sup>) = N(x<sup>(i)</sup>; μ, σ<sup>2</sup>) ∀i = 1, 2, ..., m
- Gaussian mean estimator (also known as sample mean)

• 
$$\hat{\mu}_m = \frac{1}{m} \sum_{i=1}^m x^{(i)}$$

- Let us consider a set of samples {x<sup>(1)</sup>, x<sup>(2)</sup>,..., x<sup>(m)</sup>} that are independently and identically distributed according to p(x<sup>(i)</sup>) = N(x<sup>(i)</sup>; μ, σ<sup>2</sup>) ∀i = 1, 2, ..., m
- Gaussian mean estimator (also known as sample mean)

• 
$$\hat{\mu}_m = \frac{1}{m} \sum_{i=1}^m x^{(i)}$$

$$\mathsf{bias}(\hat{\mu}_{m}) \;\; = \;\; \mathbb{E}(\hat{\mu}_{m}) - \mu$$

- Let us consider a set of samples {x<sup>(1)</sup>, x<sup>(2)</sup>,..., x<sup>(m)</sup>} that are independently and identically distributed according to p(x<sup>(i)</sup>) = N(x<sup>(i)</sup>; μ, σ<sup>2</sup>) ∀i = 1, 2, ..., m
- Gaussian mean estimator (also known as sample mean)

• 
$$\hat{\mu}_m = \frac{1}{m} \sum_{i=1}^m x^{(i)}$$

$$extstyle extstyle ext$$

- Let us consider a set of samples {x<sup>(1)</sup>, x<sup>(2)</sup>,..., x<sup>(m)</sup>} that are independently and identically distributed according to p(x<sup>(i)</sup>) = N(x<sup>(i)</sup>; μ, σ<sup>2</sup>) ∀i = 1, 2, ..., m
- Gaussian mean estimator (also known as sample mean)

• 
$$\hat{\mu}_m = \frac{1}{m} \sum_{i=1}^m x^{(i)}$$

$$\mathsf{bias}(\hat{\mu}_m) \ = \ \mathbb{E}(\hat{\mu}_m) - \mu = \mathbb{E}\left(\frac{1}{m}\sum_{i=1}^m x^{(i)}\right) - \mu = \left(\frac{1}{m}\sum_{i=1}^m \mathbb{E}\left(x^{(i)}\right)\right) - \mu$$

- Let us consider a set of samples {x<sup>(1)</sup>, x<sup>(2)</sup>,..., x<sup>(m)</sup>} that are independently and identically distributed according to p(x<sup>(i)</sup>) = N(x<sup>(i)</sup>; μ, σ<sup>2</sup>) ∀i = 1, 2, ..., m
- Gaussian mean estimator (also known as sample mean)

• 
$$\hat{\mu}_m = \frac{1}{m} \sum_{i=1}^m x^{(i)}$$

$$\begin{aligned} \mathsf{pias}(\hat{\mu}_m) &= & \mathbb{E}(\hat{\mu}_m) - \mu = \mathbb{E}\left(\frac{1}{m}\sum_{i=1}^m x^{(i)}\right) - \mu = \left(\frac{1}{m}\sum_{i=1}^m \mathbb{E}\left(x^{(i)}\right)\right) - \mu \\ &= & \left(\frac{1}{m}\sum_{i=1}^m \mu\right) - \mu \end{aligned}$$

- Let us consider a set of samples {x<sup>(1)</sup>, x<sup>(2)</sup>,..., x<sup>(m)</sup>} that are independently and identically distributed according to p(x<sup>(i)</sup>) = N(x<sup>(i)</sup>; μ, σ<sup>2</sup>) ∀i = 1, 2, ..., m
- Gaussian mean estimator (also known as sample mean)

• 
$$\hat{\mu}_m = \frac{1}{m} \sum_{i=1}^m x^{(i)}$$

$$\begin{aligned} \mathsf{pias}(\hat{\mu}_m) &= & \mathbb{E}(\hat{\mu}_m) - \mu = \mathbb{E}\left(\frac{1}{m}\sum_{i=1}^m x^{(i)}\right) - \mu = \left(\frac{1}{m}\sum_{i=1}^m \mathbb{E}\left(x^{(i)}\right)\right) - \mu \\ &= & \left(\frac{1}{m}\sum_{i=1}^m \mu\right) - \mu = \mu - \mu = 0\end{aligned}$$

• Sample variance

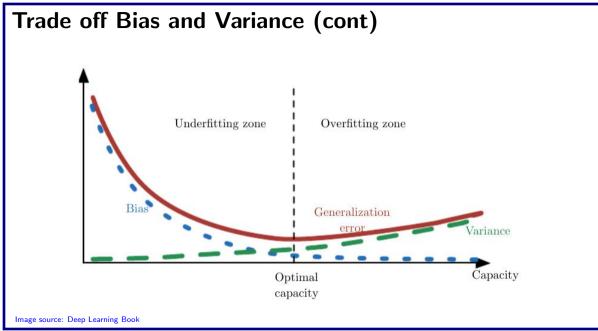
• 
$$\hat{\sigma}_m^2 = \frac{1}{m} \sum_{i=1}^m (x^{(i)} - \hat{\mu}_m)^2$$

- Sample variance
  - $\hat{\sigma}_m^2 = \frac{1}{m} \sum_{i=1}^m (x^{(i)} \hat{\mu}_m)^2$
- Bias of sample variance  $bias(\hat{\sigma}_m^2) = \mathbb{E}(\hat{\sigma}_m^2) \sigma^2$
- It can be shown that,  $\mathbb{E}(\hat{\sigma}_m^2) = \frac{m-1}{m}\sigma^2$

## Trade off Bias and Variance

- Bias Expected deviation from the true value of the function parameter
- Variance Measure of deviation from the expected estimator value
- Choice of estimator large bias or large variance?
  - Use cross-validation
  - Compare Mean Square Error

$$\mathsf{MSE} = \mathbb{E}(\hat{ heta}_m - heta)^2 = \mathsf{bias}(\hat{ heta}_m)^2 + \mathsf{Var}(\hat{ heta}_m)$$



## Logistic regression

- Dependent variable is categorical
  - Example:  $\langle Hours of study, pass/fail \rangle$
  - Output should lie between 0 and 1  $% \left( {{\left( {{{\left( {{{\left( {{{\left( {{{\left( {{{{}}}} \right)}} \right.}$
  - Similar to linear regression except the output is mapped between 0 and 1 ie.

 $p(y|\boldsymbol{x},\boldsymbol{\theta}) = \sigma(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})$ 

where 
$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$
 (Sigmoid function)

#### Support Vector Machine

- One of the most influential approaches for supervised learning
- A simple linear model  $w^T x + b$  similar to logistic regression but does not provide probability
  - Predict positive class when  $w^T x + b$  is positive and vice-versa
- Kernel trick

$$\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x} + \boldsymbol{b} = \boldsymbol{b} + \sum_{i=1}^{m} \alpha_i \boldsymbol{x}^{\mathsf{T}} \boldsymbol{x}^{(i)} = \boldsymbol{b} + \sum_{i=1}^{m} \alpha_i \boldsymbol{k}(\boldsymbol{x}, \boldsymbol{x}^{(i)})$$

# Challenges for Deep Learning

- Curse of dimensionality
- Local constancy and smoothness regularization
- Manifold learning