Introduction to Deep Learning

Ariiit Mondal

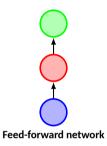
Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

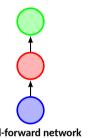
1 CS551

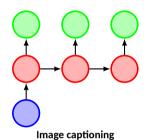
Recurrent Neural Network

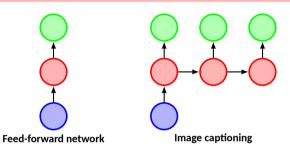
Introduction

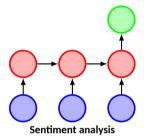
- Recurrent neural networks are used for processing sequential data in general
 - Convolution neural network is specialized for image
- Capable of processing variable length input
- Shares parameters across different part of the model
 - Example: "I went to IIT in 2017" or "In 2017, I went to IIT"
 - Example: "I grew up in Bengal. I can speak fluent "
 - For traditional machine learning models require to learn rules for different positions

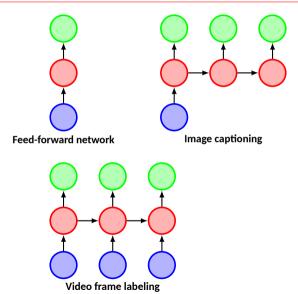


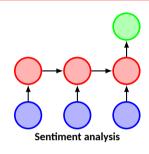


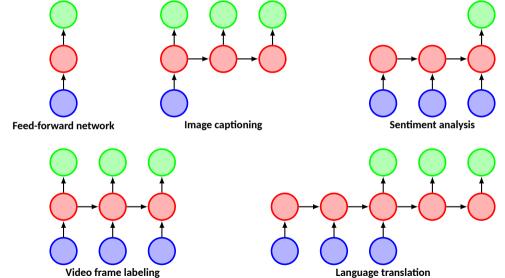




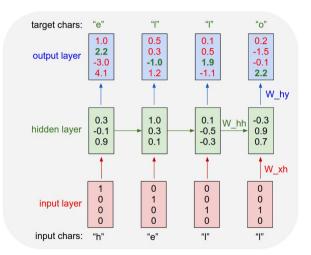


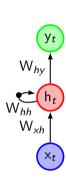






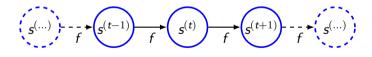
Example





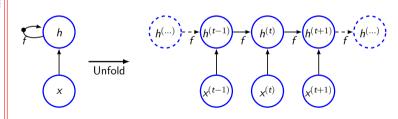
Computational graph

- Formal way to represent the computation
- Unfolding the graph results in sharing of parameters
- ullet Consider a system $\mathbf{s}^{(t)} = f(\mathbf{s}^{(t-1)}, oldsymbol{ heta})$ where $\mathbf{s}^{(t)}$ denotes the state of the system
 - It is recurrent
 - For finite number of steps, it can be unfolded
 - Example: $s^{(3)} = f(s^{(2)}, \theta) = f(f(s^{(1)}, \theta), \theta)$



System with inputs

- ullet A system will be represented as $\mathbf{s}^{(t)} = f(\mathbf{s}^{(t-1)}, \mathbf{x}^{(t)}, oldsymbol{ heta})$
 - A state contains information of whole past sequence
- ullet Usually state is indicated as hidden units such that $\mathsf{h}^{(t)} = \mathit{f}(\mathsf{h}^{(t-1)},\mathsf{x}^{(t)},oldsymbol{ heta})$
- While predicting, network learn $h^{(t)}$ as a kind of lossy summary of past sequence upto t
 - $h^{(t)}$ depends on $(x^{(t)}, x^{(t-1)}, \dots, x^{(1)})$

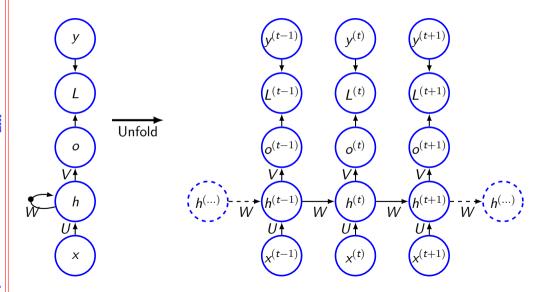


- Unfolded recursion after t steps will be $h^{(t)} = g^{(t)}(x^{(t)}, x^{(t-1)}, \dots, x^{(1)}) = f(h^{(t-1)}, x^{(t)}, \theta)$ • Unfolding process has some advantages

Unfolded graph illustrates the information flow

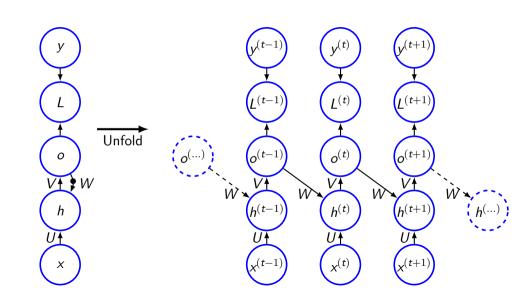
- Regardless of sequence length, learned model has same input size
- Uses the same transition function f with the same parameters at every time steps
- Can be trained with fewer examples
- Recurrent graph is succinct

Recurrent connection in hidden units

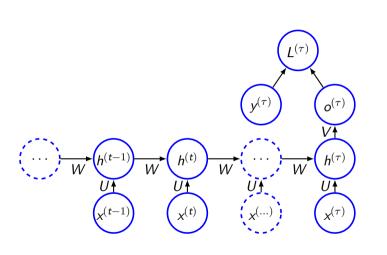


CS551

Output to hidden unit connection



CS551



CS551

11

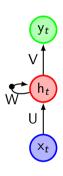
Recurrent neural network

- Function computable by a Turing machine can be computed by such recurrent network of
- tanh is usually chosen as activation function for hidden units
- Output can be considered as discrete, so o gives unnormalized log probabilities
- Forward propagation begins with initial state h⁰
 - So we have,
 a^(t) = b + Wh^(t-1) + Ux^(t)
- - $o^{(t)} = c + \hat{Vh}^{(t)}$

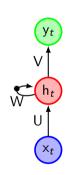
finite size

- $\hat{\mathbf{y}}^{(t)} = \operatorname{softmax}(\mathbf{o}^{(t)})$
- Input and output have the same length

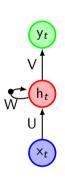
- The network will be unfolded and gradient will be back propagated
- Number of stages need to be decided
- Issue in gradient computation
 - Vanishing gradients
 - Exploding gradients



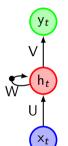
- The network will be unfolded and gradient will be back propagated
- Number of stages need to be decided
- Issue in gradient computation
 - Vanishing gradients
 - Exploding gradients
- Loss function
 - $\bullet \ E_t = \frac{1}{2} \sum_{k=1}^{\text{out}} (\hat{y}_k y_k)^2,$



- The network will be unfolded and gradient will be back propagated
- Number of stages need to be decided
- Issue in gradient computation
 - Vanishing gradients
 - Exploding gradients
- Loss function
 - $E_t = \frac{1}{2} \sum_{k=1}^{\text{out}} (\hat{y}_k y_k)^2$, $E = \frac{1}{2} \sum_{k=1}^{\tau} \sum_{k=1}^{\text{out}} (\hat{y}_{tk} y_{tk})^2$



- The network will be unfolded and gradient will be back propagated
- Number of stages need to be decided
- Issue in gradient computation
 - Vanishing gradients
 - Exploding gradients
- Loss function
 - $E_t = \frac{1}{2} \sum_{k=1}^{\text{out}} (\hat{y}_k y_k)^2$, $E = \frac{1}{2} \sum_{t=1}^{\tau} \sum_{k=1}^{\text{out}} (\hat{y}_{tk} y_{tk})^2$
 - $E = -\sum \sum [\hat{y}_{tk} \ln y_{tk} + (1 \hat{y}_{tk}) \ln(1 y_{tk})]$



Basic equations

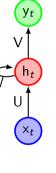
```
h_t = Ux_t + W\phi(h_{t-1})
y_t = V\phi(h_t)
```


1,

```
Basic equations
```

$$h_t = Ux_t + W\phi(h_{t-1})$$

$$y_t = V\phi(h_t)$$

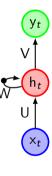


Basic equations

$$h_t = Ux_t + W\phi(h_{t-1})$$

$$y_t = V\phi(h_t)$$

$$\frac{\partial E}{\partial W} = \sum_{t=1}^{\tau} \frac{\partial E_t}{\partial W}$$



Basic equations

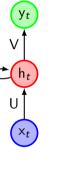
$$h_t = Ux_t + W\phi(h_{t-1})$$

$$y_t = V\phi(h_t)$$

Gradient

$$\frac{\partial E}{\partial W} = \sum_{t=1}^{\tau} \frac{\partial E_t}{\partial W} = \sum_{t=1}^{\tau} \sum_{k=1}^{t} \frac{\partial E_t}{\partial y_t}$$

CS551

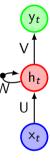


Basic equations

$$h_t = Ux_t + W\phi(h_{t-1})$$

$$y_t = V\phi(h_t)$$

$$\frac{\partial E}{\partial W} = \sum_{t=1}^{\tau} \frac{\partial E_t}{\partial W} = \sum_{t=1}^{\tau} \sum_{k=1}^{t} \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t}$$



Basic equations

$$h_t = Ux_t + W\phi(h_{t-1})$$

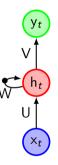
$$y_t = V\phi(h_t)$$

$$\frac{\partial E}{\partial W} = \sum_{t=1}^{\tau} \frac{\partial E_t}{\partial W} = \sum_{t=1}^{\tau} \sum_{k=1}^{t} \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k}$$

Basic equations

$$\begin{array}{rcl}
h_t & = & \mathsf{U}\mathsf{x}_t + \mathsf{W}\phi(\mathsf{h}_{t-1}) \\
\mathsf{y}_t & = & \mathsf{V}\phi(\mathsf{h}_t)
\end{array}$$

$$\frac{\partial E}{\partial W} = \sum_{t=1}^{\tau} \frac{\partial E_t}{\partial W} = \sum_{t=1}^{\tau} \sum_{k=1}^{t} \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$$



 x_t

Basic equations

$$\begin{array}{lcl} \mathbf{h}_t & = & \mathbf{U} \mathbf{x}_t + \mathbf{W} \phi(\mathbf{h}_{t-1}) \\ \mathbf{y}_t & = & \mathbf{V} \phi(\mathbf{h}_t) \end{array}$$

Gradient

$$\frac{\partial E}{\partial W} = \sum_{t=1}^{\tau} \frac{\partial E_t}{\partial W} = \sum_{t=1}^{\tau} \sum_{k=1}^{t} \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$$

Now we have.

 x_t

Basic equations

$$\begin{array}{lcl} \mathbf{h}_t & = & \mathbf{U} \mathbf{x}_t + \mathbf{W} \phi(\mathbf{h}_{t-1}) \\ \mathbf{y}_t & = & \mathbf{V} \phi(\mathbf{h}_t) \end{array}$$

$$\frac{\partial E}{\partial W} = \sum_{t=1}^{\tau} \frac{\partial E_t}{\partial W} = \sum_{t=1}^{\tau} \sum_{k=1}^{t} \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$$

 x_t

Basic equations

$$\begin{array}{lcl} \mathbf{h}_t & = & \mathsf{U} \mathbf{x}_t + \mathsf{W} \phi(\mathbf{h}_{t-1}) \\ \mathbf{y}_t & = & \mathsf{V} \phi(\mathbf{h}_t) \end{array}$$

Gradient

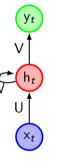
$$\frac{\partial E}{\partial W} = \sum_{t=1}^{\tau} \frac{\partial E_t}{\partial W} = \sum_{t=1}^{\tau} \sum_{k=1}^{t} \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$$

Now we have.

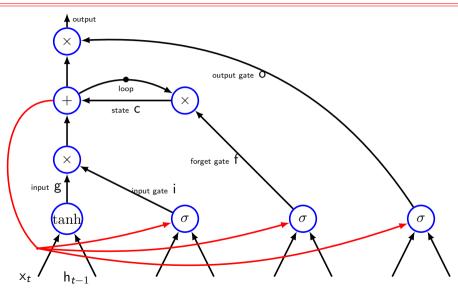
Now we have,
$$\frac{\partial \mathsf{h}_t}{\partial \mathsf{h}_k} = \prod_{i=k+1}^t \frac{\partial \mathsf{h}_i}{\partial \mathsf{h}_{i-1}} = \prod_{i=k+1}^t \mathsf{W}^T \mathsf{diag}[\phi'(\mathsf{h}_{i-1})]$$

Issues in gradient

$$\left\| \frac{\partial \mathsf{h}_{i}}{\partial \mathsf{h}_{i-1}} \right\| \leq \left\| \mathsf{W}^{\mathsf{T}} \right\| \left\| \mathsf{diag}[\phi'(\mathsf{h}_{i-1})] \right\| \leq \lambda_{\mathsf{W}} \lambda_{\phi}$$



LSTM



• Mathematical relation $i_t = \sigma(\theta_{xi}x_t + \theta_{hi}h_{t-1} + b_i)$ $f_t = \sigma(\theta_{xf}x_t + \theta_{hf}h_{t-1} + b_f)$ $o_t = \sigma(\theta_{xo}x_t + \theta_{ho}h_{t-1} + b_o)$ $g_t = \tanh(\theta_{xg}x_t + \theta_{hg}h_{t-1} + b_g)$ $c_t = f_t \odot c_{t-1} + i_t \odot g_t$

 $h_t = o_t \odot \tanh(c_t)$

LSTM

