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Convolutional Neural Networks



Introduction
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e Specialized neural network for processing data that has grid like topology
e Time series data (one dimensional)
e Image (two dimensional)

e Found to be reasonably suitable for certain class of problems eg. computer vision

e Instead of matrix multiplication, it uses convolution in at least one of the layers



Convolution operation
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Consider the scenario of locating a spaceship with a laser sensor

Suppose, the sensor is noisy

e Accurate estimation is not possible

Weighted average of location can provide a good estimate s(t) = [ x(a)w(t — a)da

e x(a) — Location at age a by the sensor, t — current time, w — weight
e This is known as convolution
e Usually denoted as s(t) = (x* w)(t)

In neural network terminology x is input, w is kernel and output is referred as feature map



Convolution operation (contd)
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Discrete convolution can be represented as
[o.¢]
s(t) = (xxw)(t) = Y _ x(a)w(t — a)
a=oo

In neural network input is multidimensional and so is kernel
e These will be referred as tensor

Two dimensional convolution can be defined as
5(17./) = (l* K)(Iv./) - Z I(m7 n)k(l_ m?j_ n) - Z I(I_ m?.j_ n)k(m7 n)

e Commutative

In many neural network, it implements as cross-correlation
s(i,j) = (I* K)( ZZI:erJJrn k(m, n)

e No kernel flip is possible



2D convolution
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aw+bx || |bw+ex | |cw+dx
tey+z || |+fy+gz | +gy+hz
ew+x | | fw+gx | |gw+hx
+iy+jz | |HY+KZ | |+ky+lz




2D Convolution
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Grid size: 7x 7



2D Convolution
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Filter size: 3 x 3
Stride: 1
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2D Convolution
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Grid size: 7x 7

Filter size: 3 x 3
Stride: 1

Output size: 5 x5



2D convolution with stride
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Grid size: 7 x 7




2D convolution with stride
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Grid size: 7 x 7

Filter size: 3 x 3

Stride: 2
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2D convolution with stride
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Grid size: 7 x 7
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2D convolution with stride

C€S551

Grid size: 7 x 7

Filter size: 3 x 3

Stride: 2

Output size: 3 x 3

Output size: (N—F)/S+1

N - input size, F - Filter size,

S - Stride



Convolution operation
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Convolution operation
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Convolution operation
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Convolution example
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Edge detection
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Image source: Deep Learning Book



Advantages
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e Convolution can exploit the following properties
e Sparse interaction (Also known as sparse connectivity or sparse weights)
e Parameter sharing
e Equivariant representation



Sparse interaction
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Traditional neural network layers use matrix multiplication to describe how outputs and
inputs are related

Convolution uses a smaller kernel
e Significant reduction in number of parameters
e Computing output require few comparison

For example, if there is m inputs and n outputs, traditional neural network will require mx n
parameters

If each of the output is connected to at most k units, the number of parameters will be
kxn



Sparse connectivity
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Parameter sharing
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Same parameters are used for more than one function model

In tradition neural network, weight is used only once

Each member of kernel is used at every position of the inputs

As k < m, the number of parameters will reduced significantly

Also, require less memory



Equivariance
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e |f the input changes, the output changes in the same way
e Specifically, a function f(x) is equivariant to function g if f{g(x)) = g(f(x))
e Example, gis a linear translation

e Let B be a function giving image brightness at some integer coordinates and g be a
function mapping from one image to another image function such that /' = g(/) with

I(xy)=I(x=1,y)
e There are cases sharing of parameters across the entire image is not a good idea



Pooling
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e Typical convolutional network has three stages

e Convolution — several convolution to produce linear activation
e Detector stage — linear activation runs through the non-linear unit such as RelLU
e Pooling — Output is updated with a summary of statistics of nearby inputs

e Maxpooling reports the maximum output within a rectangular neighbourhood
e Average of rectangular neighbourhood
e Weighted average using central pixel
e Pooling helps to make representation invariant to small translation
e Feature is more important than where it is present

e Pooling helps in case of variable size of inputs




Typical CNN
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Max Pool
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Max Pool
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Invariance of maxpooling
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Learned invariances
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Pooling with downsampling




Strided convolution
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Strided convolution (contd)

O, ® ®

Down-sampling

ONNONNONNONNO

Convolution



Zero padding
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Local convolution
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Recurrent convolution network
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AlexNet
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AlexNet
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e Architecture

o INPUT - 227 x 227 x 3

CONV1 - 96 11 x 11 filters at stride 4, pad
0, Output: 55 x 55 x 96

MAX POOL1 - 3 x 3 filter, stride 2 Out-
put: 27 x 27 x 96

e NORML - Qutput: 27 x 27 x 96
e CONV2 - 256 5 x 5 filters at stride 1, pad

2, Qutput: 27 x 27 x 256

MAX POOL2 - 3 x 3 filter, stride 2 Out-
put: 13 x 13 x 256

NORM2 - O 13 x 13 x 256

Image source: https://worksheets.codalab.org

CONV3 - 384 3 x 3 filter, stride 1, pad 1,
Output: 13 x 13 x 384

CONV4 - 384 3 x 3 filter, stride 1, pad 1,
Output: 13 x 13 x 384

CONVS5 - 256 3 x 3 filter, stride 1, pad 1,
Output: O 13 x 13 x 256

MAX POOLS3 - 3 x 3 filter, stride 2, Out-
put: 6 X 6 X 256

e FC6 - 4096 Neurons
e FC7 - 4096 Neurons
e FC8 - 1000 Neurons



VggNet
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GoogleNet




Naive inception
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Previous layer

28 x 28 x 256

Parameters :

Multiplications

Size

128Xx1x1x256 : 128Xx1xX1X256Xx28%28
128, 1 x 1

convolutions
28x28x128

192Xx3x3x256 : 64XxX3X3X64Xx28%28
192, 3 x 3

convolutions
28x28x192

96X5X5X256 1 96X5X5X256X28%28
96, 5 X 5

convolutions
28x28x96

0:0
3 x3
Max pool

28x28x256

10.9x10° : 854x10°

Next layer
28%28%672




Inception

C€S551

6AX1x1x25

128X1x1x256 : 128X1xX1x256Xx28x28

128, 1 x 1

convolutions

6 :

64Xx1xX1Xx256Xx28%28

28x28x128

64,1 x1

convolutions

192Xx3x3x64 : 192Xx3X3Xx64X28X

Previous layer

28x28x64

64X1X1X256 : 64X1X1xX256X28%X28

192, 3 x 3

convolutions

3.4x10° : 271x10°8

28x28x192

28 x 28 x 256
64, 1 x 1
convolutions
28x28x64
Parameters : Multiplications 0:0
Size 3 x3
Max pool

64X1IX1Xx256 : 64X1IX1IX256X28%L8

Next layer
96XxX5X5X64 1 96X5X5X64X28%28
28%x28x480
96, 5 X 5
convolutions
28x28%96

v

64, 1 x1

convolutions

28%28%256

28x28x64



ResNet

Image source: internet
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Comparison of CNN architecture
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Size  Top-1/top-5
Model (M) error (%) # layers  Model description
AlexNet 238  41.00/18.00 8 5 conv + 3 fc layers
VGG-16 540 28.07/9.33 16 13 conv + 3 fc layers
VGG-19 560 27.30/9.00 19 16 conv + 3 fc layers
GoogleNet 40  29.81/10.04 22 21 conv + 1 fc layers
ResNet-50 100 22.85/6.71 50 49 conv + 1 fc layers
ResNet-152 235  21.43/3.57 152 151 conv + 1 fc layers

Image source: internet



Guided backpropagation
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Backprop

Guided Backprop



Guided backpropagation
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Image source: internet

guided backpropagation corresponding image crops

guided backpropagation




Fantasy image

C€S551

cup

Image source: internet
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