Introduction to Deep Learningl

Cs551

Arijit Mondal
Dept. of Computer Science & Engineering
Indian Institute of Technology Patna

arijit@iitp.ac.in

C€S551

Convolutional Neural Networks

Introduction

C€S551

e Specialized neural network for processing data that has grid like topology
e Time series data (one dimensional)
e Image (two dimensional)

e Found to be reasonably suitable for certain class of problems eg. computer vision

e Instead of matrix multiplication, it uses convolution in at least one of the layers

Convolution operation

C€S551

Consider the scenario of locating a spaceship with a laser sensor

Suppose, the sensor is noisy

e Accurate estimation is not possible

Weighted average of location can provide a good estimate s(t) = [x(a)w(t — a)da

e x(a) — Location at age a by the sensor, t — current time, w — weight
e This is known as convolution
e Usually denoted as s(t) = (x* w)(t)

In neural network terminology x is input, w is kernel and output is referred as feature map

Convolution operation (contd)

C€S551

Discrete convolution can be represented as
[o.¢]
s(t) = (xxw)(t) = Y _ x(a)w(t — a)
a=oo

In neural network input is multidimensional and so is kernel
e These will be referred as tensor

Two dimensional convolution can be defined as
5(17./) = (l* K)(Iv./) - Z I(m7 n)k(l_ m?j_ n) - Z I(I_ m?.j_ n)k(m7 n)

e Commutative

In many neural network, it implements as cross-correlation
s(i,j) = (I* K)(ZZI:erJJrn k(m, n)

e No kernel flip is possible

2D convolution

C€S551

aw+bx || |bw+ex | |cw+dx
tey+z || |+fy+gz | +gy+hz
ew+x | | fw+gx | |gw+hx
+iy+jz | |HY+KZ | |+ky+lz

2D Convolution

C€S551

Grid size: 7x 7

2D Convolution

C€S551

Grid size: 7x 7

Filter size: 3 x 3
Stride: 1

2D Convolution

C€S551

Grid size: 7x 7

Filter size: 3 x 3
Stride: 1

2D Convolution

C€S551

Grid size: 7x 7

Filter size: 3 x 3
Stride: 1

2D Convolution

C€S551

Grid size: 7x 7

Filter size: 3 x 3
Stride: 1

2D Convolution

C€S551

Grid size: 7x 7

Filter size: 3 x 3
Stride: 1

2D Convolution

C€S551

Grid size: 7x 7

Filter size: 3 x 3
Stride: 1

Output size: 5 x5

2D convolution with stride

C€S551

Grid size: 7 x 7

2D convolution with stride

C€S551

Grid size: 7 x 7

Filter size: 3 x 3

Stride: 2

2D convolution with stride

C€S551

Grid size: 7 x 7

Filter size: 3 x 3

Stride: 2

2D convolution with stride

C€S551

Grid size: 7 x 7

Filter size: 3 x 3

Stride: 2

2D convolution with stride

C€S551

Grid size: 7 x 7

Filter size: 3 x 3

Stride: 2

Output size: 3 x 3

2D convolution with stride

C€S551

Grid size: 7 x 7

Filter size: 3 x 3

Stride: 2

Output size: 3 x 3

Output size: (N—F)/S+1

N - input size, F - Filter size,

S - Stride

Convolution operation

C€S551

Convolution operation

C€S551

£

28

28

Convolution operation

C€S551

y 4

Convolution example

C€S551

»

8 bxbx3
filters

v

28

.

28

10 5x5x8
filters

10

24

24

Edge detection

C€S551

Image source: Deep Learning Book

Advantages

C€S551

e Convolution can exploit the following properties
e Sparse interaction (Also known as sparse connectivity or sparse weights)
e Parameter sharing
e Equivariant representation

Sparse interaction

C€S551

Traditional neural network layers use matrix multiplication to describe how outputs and
inputs are related

Convolution uses a smaller kernel
e Significant reduction in number of parameters
e Computing output require few comparison

For example, if there is m inputs and n outputs, traditional neural network will require mx n
parameters

If each of the output is connected to at most k units, the number of parameters will be
kxn

Sparse connectivity

mmmmm

Sparse connectivity

mmmmm

Sparse connectivity

mmmmm

Sparse connectivity

mmmmm

mmmmm

mmmmm

Parameter sharing

C€S551

Same parameters are used for more than one function model

In tradition neural network, weight is used only once

Each member of kernel is used at every position of the inputs

As k < m, the number of parameters will reduced significantly

Also, require less memory

Equivariance

C€S551

e |f the input changes, the output changes in the same way
e Specifically, a function f(x) is equivariant to function g if f{g(x)) = g(f(x))
e Example, gis a linear translation

e Let B be a function giving image brightness at some integer coordinates and g be a
function mapping from one image to another image function such that /' = g(/) with

I(xy)=I(x=1,y)
e There are cases sharing of parameters across the entire image is not a good idea

Pooling

C€S551

e Typical convolutional network has three stages

e Convolution — several convolution to produce linear activation
e Detector stage — linear activation runs through the non-linear unit such as RelLU
e Pooling — Output is updated with a summary of statistics of nearby inputs

e Maxpooling reports the maximum output within a rectangular neighbourhood
e Average of rectangular neighbourhood
e Weighted average using central pixel
e Pooling helps to make representation invariant to small translation
e Feature is more important than where it is present

e Pooling helps in case of variable size of inputs

Typical CNN

C€S551

Input

Input

Y

Convolution stage
Affine transformation

'

Detector stage
ReLU

'

Convolutional layer

‘ Pooling stage

¢

Convolution layer
Affine transformation

'

Detector layer
ReLU

¢

Pooling layer

Y

‘ Next layer

'

Next layer

Max Pool

C€S551

Max Pool

C€S551

Max Pool

C€S551

Max Pool

C€S551

Max Pool

C€S551

Invariance of maxpooling

@ @ Pooling stage

@ @ Detector stage
@ @ Pooling stage

@ Detector stage

Learned invariances

C€S551

Large response Large response

in pooling unit in pooling unit

Large Large

response response
in detector

unit 3

LI&|s| | b|&]S

in detector
unit 1

Pooling with downsampling

Strided convolution

) (=) ©)
IR wg

Strided convolution (contd)

O, ® ®

Down-sampling

ONNONNONNONNO

Convolution

Zero padding

Oé/(g OO O/(g

LASoo00os s
.{/(g OOOOOO%%\.

Connections

\g

()
g
Q

Q
(S
Q

X

X
@

SR

P
SERe

T5SS2

28

Local convolution

Output

Input

OO
OO
OO
OO

OO0

OO
OO
OO
OO
OO0

OO
OO
OO
OO

OO0

OO
OO
OO
OO

OO0

mmmmm

Recurrent convolution network

3

AlexNet

C€S551

128 204¢
224
dense dense]
1
11 A 128 Max L L
i 204 2048
224\l5tride Max 128 Max pooling
of 4 pooling pooling
3 78

Image source: https://worksheets.codalab.org

so48 \dense

1000

AlexNet

C€S551

e Architecture

o INPUT - 227 x 227 x 3

CONV1 - 96 11 x 11 filters at stride 4, pad
0, Output: 55 x 55 x 96

MAX POOL1 - 3 x 3 filter, stride 2 Out-
put: 27 x 27 x 96

e NORML - Qutput: 27 x 27 x 96
e CONV2 - 256 5 x 5 filters at stride 1, pad

2, Qutput: 27 x 27 x 256

MAX POOL2 - 3 x 3 filter, stride 2 Out-
put: 13 x 13 x 256

NORM2 - O 13 x 13 x 256

Image source: https://worksheets.codalab.org

CONV3 - 384 3 x 3 filter, stride 1, pad 1,
Output: 13 x 13 x 384

CONV4 - 384 3 x 3 filter, stride 1, pad 1,
Output: 13 x 13 x 384

CONVS5 - 256 3 x 3 filter, stride 1, pad 1,
Output: O 13 x 13 x 256

MAX POOLS3 - 3 x 3 filter, stride 2, Out-
put: 6 X 6 X 256

e FC6 - 4096 Neurons
e FC7 - 4096 Neurons
e FC8 - 1000 Neurons

VggNet

9607 24

9607 94

9601 24 Lioz1s

NBM@&

it

Z2LG ‘AUOD gXg

2LG ‘AUOD EXE

ZLS ‘AUOD £Xg pL:221S

N\?Ha&

I _’

ZLSG ‘AUOD gXg

2LG ‘AUOD EXE

I _>

2LG ‘AUOD EXE 8z0718

N\~Me&

9GZ ‘AUOD gXE
9G¢ ¢AUOD eXg

9GZ ‘AUOD EXE 96:2215

N\?Ma&

it

8¢l ‘AU0D g£X¢
*
8¢l ‘AUOD gXg

N\~Me&

CLLaz1s

Image source: internet

9 ‘AUOD gXE
*
9 ‘AUOD £XE

p
L

vciazis

P
.

T5SS2

33

GoogleNet

Naive inception

C€S551

Previous layer

28 x 28 x 256

Parameters :

Multiplications

Size

128Xx1x1x256 : 128Xx1xX1X256Xx28%28
128, 1 x 1

convolutions
28x28x128

192Xx3x3x256 : 64XxX3X3X64Xx28%28
192, 3 x 3

convolutions
28x28x192

96X5X5X256 1 96X5X5X256X28%28
96, 5 X 5

convolutions
28x28x96

0:0
3 x3
Max pool

28x28x256

10.9x10° : 854x10°

Next layer
28%28%672

Inception

C€S551

6AX1x1x25

128X1x1x256 : 128X1xX1x256Xx28x28

128, 1 x 1

convolutions

6 :

64Xx1xX1Xx256Xx28%28

28x28x128

64,1 x1

convolutions

192Xx3x3x64 : 192Xx3X3Xx64X28X

Previous layer

28x28x64

64X1X1X256 : 64X1X1xX256X28%X28

192, 3 x 3

convolutions

3.4x10° : 271x10°8

28x28x192

28 x 28 x 256
64, 1 x 1
convolutions
28x28x64
Parameters : Multiplications 0:0
Size 3 x3
Max pool

64X1IX1Xx256 : 64X1IX1IX256X28%L8

Next layer
96XxX5X5X64 1 96X5X5X64X28%28
28%x28x480
96, 5 X 5
convolutions
28x28%96

v

64, 1 x1

convolutions

28%28%256

28x28x64

ResNet

Image source: internet

T5SS2

37

Comparison of CNN architecture

C€S551

Size Top-1/top-5
Model (M) error (%) # layers Model description
AlexNet 238 41.00/18.00 8 5 conv + 3 fc layers
VGG-16 540 28.07/9.33 16 13 conv + 3 fc layers
VGG-19 560 27.30/9.00 19 16 conv + 3 fc layers
GoogleNet 40 29.81/10.04 22 21 conv + 1 fc layers
ResNet-50 100 22.85/6.71 50 49 conv + 1 fc layers
ResNet-152 235 21.43/3.57 152 151 conv + 1 fc layers

Image source: internet

Guided backpropagation

C€S551

Backprop

Guided Backprop

Guided backpropagation

C€S551

Image source: internet

guided backpropagation corresponding image crops

guided backpropagation

Fantasy image

C€S551

cup

Image source: internet

dalmatian

goose

