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Deep feedforward networks
• Also known as feedforward neural network or multilayer perceptron

• Goal of such network is to approximate some function f ∗
• For classifier, x is mapped to category y ie. y = f ∗(x)
• A feedforward network maps y = f(x;θ) and learns θ for which the result is the best

function approximation
• Information flows from input to intermediate to output

• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network

• Typically it represents composition of functions
• Three functions f (1), f (2), f (3) are connected in chain
• Overall function realized is f(x) = f (3)(f (2)(f (1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to model brain accurately!
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Multilayer neural network

x1 . . . xj . . . xk 1

h1(x) . . . . . . 1

W1 b1

h2(x) . . . . . . 1

W2 b2

f(x)

W3
b3
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Issues with linear FFN
• Fit well for linear and logistic regression
• Convex optimization technique may be used
• Capacity of such function is limited
• Model cannot understand interaction between any two variables
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Overcome issues of linear FFN
• Transform x (input) into ϕ(x) where ϕ is nonlinear transformation

• How to choose ϕ?
• Use a very generic ϕ of high dimension

• Enough capacity but may result in poor generalization
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior information

• Manually design ϕ

• Require domain knowledge
• Strategy of deep learning is to learn ϕ
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Goal of deep learning
• We have a model y = f(x;θ,w) = ϕ(x;θ)Tw
• We use θ to learn ϕ

• w and ϕ determines the output. ϕ defines the hidden layer
• It looses the convexity of the training problem but benefits a lot
• Representation is parameterized as ϕ(x,θ)

• θ can be determined by solving optimization problem
• Advantages

• ϕ can be very generic
• Human practitioner can encode their knowledge to designing ϕ(x;θ)
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Design issues of feedforward network
• Choice of optimizer
• Cost function
• The form of output unit
• Choice of activation function
• Design of architecture - number of layers, number of units in each layer
• Computation of gradients

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit



CS
55

1

9

Example
• Let us choose XOR function
• Target function is y = f ∗(x) and our model provides y = f(x;θ)
• Learning algorithm will choose the parameters θ to make f close to f ∗

• Target is to fit output for X = {[0, 0]T, [0, 1]T, [1, 0]T, [1, 1]T}
• This can be treated as regression problem and MSE error can be chosen as loss function

(J(θ) = 1

4

∑
x∈X

(f ∗(x)− f(x;θ))2)

• We need to choose f(x;θ) where θ depends on w and b
• Let us consider a linear model f(x;w, b) = xTw + b
• Solving these, we get w = 0 and b = 1

2
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Simple FFN with hidden layer

x1 x2

h1 h2

y

x

h

y

W

w

• Let us assume that the hidden unit h computes f (1)(x;W, c)

• In the next layer y = f (2)(h;w, b) is computed
• Complete model f(x;W, c,w, b) = f (2)(f (1)(x))
• Suppose f (1)(x) = WTx and f 2(h) = hTw then f(x) = wTWTx
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Simple FFN with hidden layer (contd.)

x1 x2

h1 h2

y

x

h

y

W

w

• We need to have nonlinear function to describe the features
• Usually NN have affine transformation of learned parameters fol-

lowed by nonlinear activation function
• Let us use h = g(WTx + c)
• Let us use ReLU as activation function g(z) = max{0, z}
• g is chosen element wise hi = g(xTW:,i + ci)
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Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b

• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =


0 0
1 0
0 1
1 1

, XW =


0 0
1 1
1 1
2 2

, add bias c


0 −1
1 0
1 0
2 1

, apply h


0 0
1 0
1 0
2 1

, multiply

with w


0
1
1
0


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Simple FFN with hidden layer (contd.)
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Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows
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Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solution for XOR problem can be as follows

• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have
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Gradient based learning
• Similar to machine learning tasks, gradient descent based learning is used

• Need to specify optimization procedure, cost function and model family
• For NN, model is nonlinear and function becomes nonconvex

• Usually trained by iterative, gradient based optimizer
• Solved by using gradient descent or stochastic gradient descent (SGD)

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit



CS
55

1

14

Gradient descent
• For a function y = f(x), derivative (slope at point x) of it is f ′(x) = dy

dx
• A small change in the input can cause output to move to a value given by f(x + ϵ) ≈

f(x) + ϵf ′(x)
• We need to take a jump so that y reduces (assuming minimization problem)
• We can say that f(x − ϵsign(f ′(x))) is less than f(x)
• For multiple inputs partial derivatives are used ie. ∂

∂xi
f(x)

• Gradient vector is represented as ∇xf(x)
• Gradient descent proposes a new point as x′ = x − ϵ∇xf(x) where ϵ is the learning rate

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit



CS
55

1

15

Stochastic gradient descent
• Large training set are necessary for good generalization
• Cost function used for optimization is J(θ) = 1

m
∑m

i=1 L(x(i), y(i),θ)
• Gradient descent requires ∇θJ(θ) = 1

m
∑m

i=1∇θL(x(i), y(i),θ)

• Computation cost is O(m)

• For SGD, gradient is an expectation estimated from a small sample known as minibatch
(B = {x(1), . . . , x(m′)})

• Estimated gradient is g =
1

m′

m′∑
i=1

∇θL(x(i), y(i),θ)

• New point will be θ = θ − ϵg
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SGD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w × x where w is initialized with 4, learning rate as

0.1

• MSE as cost function. Derivative will be x(w × x − y)
Step Point Derivative New w

1 (1,2) 1*(4.0*1-2)=2.0 3.80
2 (2,4) 2*(3.8*2-4)=7.2 3.08
3 (3,6) 3*(3.1*3-6)=9.7 2.11
4 (4,8) 4*(2.1*4-8)=1.7 1.94
5 (1,2) 1*(1.9*1-2)=-0.1 1.94
6 (2,4) 2*(1.9*2-4)=-0.2 1.97
7 (3,6) 3*(2.0*3-6)=-0.3 1.99
8 (4,8) 4*(2.0*4-8)=-0.1 2.00
9 (4,8) 1*(2.0*1-2)=0.0 2.00
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GD example
• Consider the following pair (x, y) of points - (1, 2), (2, 4), (3, 6), (4, 8)
• Let us try to fit a curve as follows y = w × x where w is initialized with 4, learning rate as
0.1

• MSE as cost function. Derivative will be 1
4

∑
i xi(w × xi − yi)

Step Derivative New w

1 15 2.5
2 3.75 2.13
3 0.94 2.03
4 0.23 2.01
5 0.06 2.00
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Cost function
• Similar to other parametric model like linear models
• Parametric model defines distribution p(y|x;θ)
• Principle of maximum likelihood is used (cross entropy between training data and model

prediction)
• Instead of predicting the whole distribution of y, some statistic of y conditioned on x is

predicted
• It can also contain regularization term
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Maximum likelihood estimation
• Consider a set of m examples X = {x(1), . . . , x(m)} drawn independently from the true but

unknown data generating distribution pdata(x)
• Let pmodel(x;θ) be a parametric family of probability distribution

• Maximum likelihood estimator for θ is defined as

θML = arg max
θ

pmodel(X;θ) = arg max
θ

m∏
i=1

pmodel(x(i);θ)

• It can be written as θML = arg max
θ

m∑
i=1

log pmodel(x(i);θ)

• By dividing m we get θML = arg max
θ

EX∼pdata log pmodel(x;θ)
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Maximum likelihood estimation (cont.)
• Minimizing dissimilarity between the empirical p̂data and model distribution pmodel and it is

measured by KL divergence
DKL(p̂data∥pmodel) = arg min

θ
EX∼p̂data [log p̂data(x)− log pmodel(x;θ)]

• We need to minimize − arg min
θ

EX∼p̂data log pmodel(x;θ)
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Maximum likelihood estimation (cont.)
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Conditional log-likelihood
• In most of the supervised learning we estimate P(y|x;θ)
• If X be the all inputs and Y be observed targets then conditional maximum likelihood

estimator is θML = arg max
θ

P(Y|X;θ)

• If the examples are assumed to be i.i.d then we can say

θML = arg max
θ

m∑
i=1

log P(y(i)|x(i);θ)
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Linear regression as maximum likelihood
• Instead of producing single prediction ŷ for a given x, we assume the model produces condi-

tional distribution p(y|x)
• For infinitely large training set, we can observe multiple examples having the same x but

different values of y
• Goal is to fit the distribution p(y|x)

• Let us assume, p(y|x) = N (y; ŷ(x;w), σ2)

• Since the examples are assumed to be i.i.d, conditional log-likelihood is given by
m∑

i=1

log p(y(i)|x(i);θ) = −m logσ − m
2

log(2π)−
m∑

i=1

∥ŷ(i) − y(i)∥2
2σ2
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Learning conditional distributions
• Usually neural networks are trained using maximum likelihood. Therefore the cost function

is negative log-likelihood. Also known as cross entropy between training data and model
distribution

• Cost function J(θ) = −EX,Y∼p̂data log pmodel(y|x,θ)
• Uniform across different models
• Gradient of cost function is very much crucial

• Large and predictable gradient can serve good guide for learning process
• Function that saturates will have small gradient

• Activation function usually produces values in a bounded zone (saturates)
• Negative log-likelihood can overcome some of the problems

• Output unit having exp function can saturate for high negative value
• Log-likelihood cost function undoes the exp of some output functions
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Learning conditional statistics
• Instead of learning the whole distribution p(y|x;θ), we want to learn one conditional statistics

of y given x
• For a predicting function f(x;θ), we would like to predict the mean of y

• Neural network can represent any function f from a very wide range of functions
• Range of function is limited by features like continuity, boundedness, etc.
• Cost function becomes functional rather than a function
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Learning conditional statistics
• Need to solve the optimization problem

f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥2

• Using calculus of variation, it gives f ∗(x) = EY∼pdata(y|x)[y]
• Mean of y for each value of x

• Using a different cost function f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥1
• Median of y for each value of x
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• Mean of y for each value of x

• Using a different cost function f ∗ = arg min
f

EX,Y∼pdata∥y − f(x)∥1

• Median of y for each value of x
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Calculus of variations
• Let us consider functional J[y] =

∫ x2

x1

L(x, y(x), y′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]

• η is an arbitrary function of x such that η(x1) = η(x2) = 0 and differentiable

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ
dε

∣∣∣∣
ε=0

=

∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say, dL
dε =

∂L
∂y

dy
dε +

∂L
∂y′

dy′
dε

• As we have y = f + εη and y′ = f′ + εη′, therefore, dL
dε =

∂L
∂y η +

∂L
∂y′ η

′
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Calculus of variations (contd.)
• Now we have ∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f η +

∂L
∂f′ η

′
)

dx

=

∫ x2

x1

(
∂L
∂f η − η

d
dx

∂L
∂f′

)
dx + ∂L

∂f′ η
∣∣∣∣x2

x1

• Hence
∫ x2

x1

η

(
∂L
∂f − d

dx
∂L
∂f′

)
dx = 0

• Euler-Lagrange equation ∂L
∂f − d

dx
∂L
∂f′ = 0

Arijit

Arijit



CS
55

1

27

Calculus of variations (contd.)
• Now we have ∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f η +

∂L
∂f′ η

′
)

dx

=

∫ x2

x1

(
∂L
∂f η − η

d
dx

∂L
∂f′

)
dx + ∂L

∂f′ η
∣∣∣∣x2

x1

• Hence
∫ x2

x1

η

(
∂L
∂f − d

dx
∂L
∂f′

)
dx = 0

• Euler-Lagrange equation ∂L
∂f − d

dx
∂L
∂f′ = 0

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit



CS
55

1

27

Calculus of variations (contd.)
• Now we have ∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f η +

∂L
∂f′ η

′
)

dx

=

∫ x2

x1

(
∂L
∂f η − η

d
dx

∂L
∂f′

)
dx + ∂L

∂f′ η
∣∣∣∣x2

x1

• Hence
∫ x2

x1

η

(
∂L
∂f − d

dx
∂L
∂f′

)
dx = 0

• Euler-Lagrange equation ∂L
∂f − d

dx
∂L
∂f′ = 0

Arijit



CS
55

1

27

Calculus of variations (contd.)
• Now we have ∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f η +

∂L
∂f′ η

′
)

dx

=

∫ x2

x1

(
∂L
∂f η − η

d
dx

∂L
∂f′

)
dx + ∂L

∂f′ η
∣∣∣∣x2

x1

• Hence
∫ x2

x1

η

(
∂L
∂f − d

dx
∂L
∂f′

)
dx = 0

• Euler-Lagrange equation ∂L
∂f − d

dx
∂L
∂f′ = 0

Arijit

Arijit



CS
55

1

28

Example
• Let us consider distance between two points A[y] =

∫ x2

x1

√
1 + [y′(x)]2 dx

• y ′(x) = dy
dx , y1 = f(x1) , y2 = f(x2)

• We have, ∂L
∂f − d

dx
∂L
∂f′ = 0 where L =

√
1 + [f′(x)]2

• As f does not appear explicitly in L, hence d
dx

∂L
∂f′ = 0

• Now we have, d
dx

f′(x)√
1 + [f′(x)]2

= 0
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Example
• Taking derivative we get d2f

dx2 · 1[√
1 + [f′(x)]2

]3 = 0

• Therefore we have, d2f
dx2 = 0

• Hence we have f(x) = mx + b with m =
y2 − y1
x2 − x1

and b =
x2y1 − x1y2

x2 − x1
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Output units
• Choice of cost function is directly related with the choice of output function
• In most cases cost function is determined by cross entropy between data and model dis-

tribution
• Any kind of output unit can be used as hidden unit
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Linear units
• Suited for Gaussian output distribution
• Given features h, linear output unit produces ŷ = WTh + b
• This can be treated as conditional probability p(y|x) = N (y; ŷ, I)
• Maximizing log-likelihood is equivalent to minimizing mean square error
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Sigmoid unit
• Mostly suited for binary classification problem that is Bernoulli output distribution
• The neural networks need to predict p(y = 1|x)

• If linear unit has been chosen, p(y = 1|x) = max
{
0,min{1,WTh + b}

}
• Gradient?

• Model should have strong gradient whenever the answer is wrong
• Let us assume unnormalized log probability is linear with z = WTh + b
• Therefore, log P̃(y) = yz ⇒ P̃(y) = exp(yz) ⇒ P(y) = exp(yz)∑

y′∈{0,1} exp(y′z)

• It can be written as P(y) = σ((2y − 1)z)
• The loss function for maximum likelihood is

J(θ) = − log P(y|x) = − logσ((2y − 1)z) = ζ((1− 2y)z)
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Softmax unit
• Similar to sigmoid. Mostly suited for multinoulli distribution
• We need to predict a vector ŷ such that ŷi = P(Y = i|x)
• A linear layer predicts unnormalized probabilities z = WTh + b that is zi = log P̃(y = i|x)
• Formally, softmax(z)i =

exp zi∑
j exp(zj)

• Log in log-likelihood can undo exp log softmax(z)i = zi − log
∑

j
exp(zj)• Does it saturate?

• What about incorrect prediction?
• Invariant to addition of some scalar to all input variables ie.

softmax(z) = softmax(z + c)
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Hidden units
• Active area of research and does not have good guiding theoretical principle
• Usually rectified linear unit (ReLU) is chosen in most of the cases
• Design process consists of trial and error, then the suitable one is chosen
• Some of the activation functions are not differentiable (eg. ReLU)

• Still gradient descent performs well
• Neural network does not converge to local minima but reduces the value of cost function

to a very small value
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Generalization of ReLU
• ReLU is defined as g(z) = max{0, z}
• Using non-zero slope, hi = g(z,α)i = max(0, zi) + αi min(0, zi)

• Absolute value rectification will make αi = −1 and g(z) = |z|
• Leaky ReLU assumes very small values for αi

• Parametric ReLU tries to learn αi parameters
• Maxout unit g(z)i = max

j∈G(i)
zj

• Suitable for learning piecewise linear function
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Logistic sigmoid & hyperbolic tangent
• Logistic sigmoid g(z) = σ(z)
• Hyperbolic tangent g(z) = tanh(z)

• tanh(z) = 2σ(2z)− 1

• Widespread saturation of sigmoidal unit is an issue for gradient based learning
• Usually discouraged to use as hidden units

• Usually, hyperbolic tangent function performs better where sigmoidal function must be
used
• Behaves linearly at 0
• Sigmoidal activation function are more common in settings other than feedforward net-

work
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Other hidden units
• Differentiable functions are usually preferred
• Activation function h = cos(Wx + b) performs well for MNIST data set
• Sometimes no activation function helps in reducing the number of parameters
• Radial Basis Function - ϕ(x, c) = ϕ(∥x − c∥)

• Gaussian - exp(−(εr)2)
• Softplus - g(x) = ζ(x) = log(1 + exp(x))
• Hard tanh - g(x) = max(−1,min(1, x))
• Hidden unit design is an active area of research
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Architecture design
• Structure of neural network (chain based architecture)

• Number of layers
• Number of units in each layer
• Connectivity of those units

• Single hidden layer is sufficient to fit the training data
• Often deeper networks are preferred

• Fewer number of units
• Fewer number of parameters
• Difficult to optimize
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