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e Also known as feedforward neural network or multilayer perceptron
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Deep feedforward networks

C€S551

e Also known as feedforward neural network or multilayer perceptron
e Goal of such network is to approximate some function@

e For classifier, x is mapped to category y ie. O @(x

e A feedforward network maps y = x ) and learns @ for which the result is the best
function approximation "4 T
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Deep feedforward networks

C€S551

e Also known as feedforward neural network or multilayer perceptron
e Goal of such network is to approximate some function 7*
e For classifier, x is mapped to category y ie. y = f*(x)
o A feedforward network maps y = f(x;8) and learns @ for which the result is the best

function approximation OF
. . . . V—— 0
e Information flows from input to intermediate to output R
—sf—>
e No feedback, directed acyclic graph v

~edbac
e For general model, it can have feedback and known as recurrent neural network
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Deep feedforward networks

C€S551

Also known as feedforward neural network or multilayer perceptron
Goal of such network is to approximate some function 7*
e For classifier, x is mapped to category y ie. y = f*(x)

e A feedforward network maps y = f(x;80) and learns 6 for which the result is the best
function approximation

Information flows from input to intermediate to output
e No feedback, directed acyclic graph

e For general model, it can have feedback and known as recurrent neural network
Typically it represents composition of functions

e Three functions W) are connected in chain
e Overall function realized is f(x) = f%)) ~
e The number of layers provides the depth of the model
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Deep feedforward networks

C€S551

Also known as feedforward neural network or multilayer perceptron

Goal of such network is to approximate some function 7*

e For classifier, x is mapped to category y ie. y = f*(x)

e A feedforward network maps y = f(x;80) and learns 6 for which the result is the best
function approximation

Information flows from input to intermediate to output

e No feedback, directed acyclic graph

e For general model, it can have feedback and known as recurrent neural network

Typically it represents composition of functions

e Three functions 1), f2) () are connected in chain
e Overall function realized is flx) = 3 (F) (f1(x)))|
e The number of layers provides the depth of the model

Goal of NN is not to model brain accurately!
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Multilayer neural network
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Issues with linear FFN

C€S551

Fit well for linear and logistic regression <~

Convex optimization technique may be used

Capacity of such function is limited <~

Model cannot understand interaction between any two variables
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Overcome issues of linear FFN

C€S551

e Transform x (input) into ¢(x) where ¢ is nonlinear transformation
h o X
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Overcome issues of linear FFN

C€S551

e Transform x (input) into ¢(x) where ¢ is nonlinear transformation

e How to choose ¢?



Overcome issues of linear FFN

C€S551

e Transform x (input) into ¢(x) where ¢ is nonlinear transformation
e How to choose ¢?
. Z . . .
e Use a very generlc@of high dimension
e Enough capacity but may result in poor generalization

S
e Very generic feature mapping usually based on principle of local smoothness
rinciple of local smoothness.

e Do not encode enough prior information


Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit


Overcome issues of linear FFN

C€S551

e Transform x (input) into ¢(x) where ¢ is nonlinear transformation
e How to choose ¢?

Use a very generic @of high dimension

e Enough capacity but may result in poor generalization

e Very generic feature mapping usually based on principle of local smoothness
e Do not encode enough prior information

M lly desi
anually eagnﬂ

e Require domain knowledge /
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Overcome issues of linear FFN

C€S551

e Transform x (input) into ¢(x) where ¢ is nonlinear transformation
e How to choose ¢?
e Use a very generic ¢ of high dimension
e Enough capacity but may result in poor generalization
e Very generic feature mapping usually based on principle of local smoothness
e Do not encode enough prior information
e Manually design ¢

r

e Require domain knowledge MWWW\ Loarunind

e Strategy of deep learning is to learn ¢ o
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Goal of deep learning

C€S551

We have a model y= f(f’@) =(¢(x; 0

We use 0 to learn qﬁ

w and qb determlnes the output. gZ) " defines the hidden layer

It looses the convexity of the tramlng problem but benefits a lot

Representation is parameterized asM

e 0 can be determined by sol\wi’nli@jpn problem
Advantages

e ¢ can be very generic v

/H [) ﬁ
NS
NG

Qw’/

e Human practitioner can encode their knowledge to designing ¢(x; 8)
SR,
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Design issues of feedforward network

C€S551

Choice of optimizer v~
Cost function —

The form of output unit — v~
Choice of activation function —*

Design of architecture - number of layers, number of units in each layer |

Computation of gradients <

_
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Example

C€S551

e Let us choose XOR function
e Target function is y:@(x) and our model provides y:@x;é/s -
S A S

e Learning algorithm will choose the parameters 6 to make f close to f*

- —
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Example

C€S551

Let us choose XOR function
Target function is y = *(x) and our model provides y = f(x; 0) 0 &

Learning algorithm will choose the paramﬁters 0 to mal%e f close to 7*
Target is to fit output for X = {[0,0]", [0, 1] ", [1,0] 7, [1,1] T} <«
et B Sk R Skt |
This can be treated as regressmn problem and MSE error can be chosen as loss function

o0 2005 | <
Z WL\@ v

7 xEX Mgé
o We need to choose f(x; @) where 6 depends on w and b /[:—
e Let us consider a linear model fix;w, b) = XT+ \LVV "
(o - b) Vi V - / :
?/9): /L—Q(o/ (1%, +NL%2+E}>7/%' o}}cjo L\/\'Z\"O @
R IU ' BJ hO i (9’2 W o
+( _ (W?L"(‘WL%L ) 57\‘1 b
-0, 1,1 ',

(- w, - b~
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Example

C€S551

Let us choose XOR function

Target function is y = *(x) and our model provides y = f(x; 0)

Learning algorithm will choose the parameters 6 to make f close to f*

Target is to fit output for X = {[0,0]7,[0,1]7,[1,0],[1,1]"}

This can be treated as regression problem and MSE error can be chosen as loss function

4Zf* ) — f(x;6))?)

xeX @
We need to choose f(x; 0) where 6 depends on w and b

Let us consider a linear model f(x;w, b) = x"w + b Ty

Solving these, we get w = 0 and (b = % é}
Awn
{
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Simple FFN with hidden layer

C€S551

o Let us assume that the hidden unit h computes (1) (x; W, c)
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Simple FFN with hidden layer

C€S551

E

Let us assume that the hidden unit h computes (1) (x; W, c)
In the next layer y = f(Q)(h;w,g) is computed

—Q
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Simple FFN with hidden layer

C€S551

E

Let us assume that the hidden unit h computes (1) (x; W, c)
In the next layer y = f(?)(h;w, b) is computed

o Complete model f(x; W, c,w, b) = F@ (FD(x)

®

w
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Simple FFN with hidden layer

C€S551

Let us assume that the hidden unit h computes (1) (x; W, c)
[ In the next layer y = f(?)(h;w, b) is computed
o Complete model f(x; W, c,w, b) = ) (f((x))
o Suppose () (x) = WTx and f%(h) = h"w
X)) =W X “h)=hw
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Simple FFN with hidden layer

C€S551

Let us assume that the hidden unit h computes (1) (x; W, c)
In the next layer y = f(?)(h;w, b) is computed
Complete model f(x; W, c,w, b) = 2 (f(1)(x)) —

qﬁfm) ! yL

b

Suppose (1) (x) = W'x and 2(h) = hTw then

®

w
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Simple FFN with hidden layer (contd.)

C€S551

[ We need to have nonlinear function to describe the features

Usually NN have affine transformation of learned parameters fol-
lowed by nonlinear activation function

e Let us use h :WTX +¢) 5
E Let us use RelLU as activation function g(z) = max{0, z} % g
g is chosen element wise h; = g(x"W.; + ¢;) :

A ;
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Simple FFN with hidden layer (contd.)

C€S551

e Complete network is f{x; W, c,w, b) = v;vfmax{O,WTx +cl+ b
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Simple FFN with hidden layer (contd.)

C€S551

e Complete network is f(x; @,@,@, B) = w’ max{0,W'x+c} + b

e A solution for XOR problem can be as follows

e —
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Simple FFN with hidden layer (contd.)

C€S551

e Complete network is f{x; W, c,w, b) = w max{0, W x +c} + b
e A solution for XOR problem can be as follows

(e[ 4 [

e Now we have

e X



Simple FFN with hidden layer (contd.)

C€S551

e Complete network is f{x; W, c,w, b) = w max{0, W x +c} + b
e A solution for XOR problem can be as follows

o W=

o Now we

(1 1
11

bave
0 0

2L

1 0
1
1

[T

J b0

|1
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Simple FFN with hidden layer (contd.)

C€S551

e Complete network is f{x; W, c,w, b) = w max{0, W x +c} + b

e A solution for XOR problem can be as follows

o W=

o Now we

(1 1 0 1
e e e
bave

00

10

g 1 . XW

11



Simple FFN with hidden layer (contd.)

C€S551

e Complete network is f{x; W, c,w, b) = w max{0, W x +c} + b
e A solution for XOR problem can be as follows

e[ e

11

e Now we have

0.0 0 0]+t

10 11
X=lo 1 [ R=]g

11 2 2


Arijit

Arijit

Arijit

Arijit

Arijit


Simple FFN with hidden layer (contd.)

C€S551

e Complete network is f{x; W, c,w, b) = w max{0, W x +c} + b

e A solution for XOR problem can be as follows

o W=

o Now we

(1 1 [ o
a5
have

[0 0 0
10 1
0 1 » XW = 1
11 2

B!
W= o

[ b=0

, add bias ¢

N = = O



Simple FFN with hidden layer (contd.)

C€S551

e Complete network is f{x; W, c,w, b) = w max{0, W x +c} + b

e A solution for XOR problem can be as follows
(11 © 1
il EOY < E BRY E

o Now we bave
o 0

11 .
CXW = llﬁ,addblasc

2 2

— O~ O
_ -0 O

R
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Simple FFN with hidden layer (contd.)

C€S551

e Complete network is f{x; W, c,w, b) = w max{0, W x +c} + b

e A solution for XOR problem can be as follows

o W=

o Now we

(1 1 0 1

e [ A ] e

bave

0 0 0 0 0 -1

1 0 1 1 ) 1 0

0 1 , XW = 11 , add bias ¢ 1 0 , apply h
|11 2 2 2 1



Simple FFN with hidden layer (contd.)

C€S551

e Complete network is f{x; W, c,w, b) = w max{0, W x +c} + b

e A solution for XOR problem can be as follows

o W=

o Now we

(1 1 0 1
e[ e e

bave

00 00 ) 0
1 0 1 1 . 1 O 1
0 1 , XW = 11 , add bias ¢ 1 0 , apply h 1
_1 1 2 2 2 1 2

)—‘OO@
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Simple FFN with hidden layer (contd.)

C€S551

e Complete network is f{x; W, c,w, b) = w max{0, W x +c} + b

e A solution for XOR problem can be as follows

Hoem[ o ]ow=[ 5] om0

0 00 0 —1 0
0 11 . 1 0 1
L XW = R add bias ¢ 1o | apply h 1
1 2 2 2 1 2

o W = _1
° Nowwebave
0

o X = (1)
|1

with w

o O O

, multiply
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Simple FFN with hidden layer (contd.)

C€S551

e Complete network is f{x; W, c,w, b) = w max{0, W x4 c} + b
e A solution for XOR problem can be as follows (_Wﬁ\/\,-/b off

“W::1 ”'C:[—Ol]wz{;lﬂ'bzow . 0D«

e Now we have

—1

XW = , add bias ¢ , multiply

_ -0 O
N~ = O
N = = O
N~ = O
== )

[5)

o

=2

<

>

=3
o
>
3
= O = O
O = = O
@
>
B/—>
O
\



Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit


Gradient based learning

C€S551

e Similar to machine learning tasks, gradient descent based learning is used
e Need to specify optimization procedure, cost function and model family
e For NN, model is nonlinear and function becomes nonconvex
e Usually trained by iterative, gradient based optimizer

e Solved by using gradient descent or stochastic gradient descent (SGD)
_— -_——

J
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Gradient descent

C€S551

For a function y = f(x), derivative (slope at point x) of it is f’( X) = /
A small change in the input can cause output to move to a value given by f(x + ¢€)

fx) + ef’ () 1

We need to take a jump so that y reduces (assuming minimization problem)

10 r
We can say that f(x —(dsign(f'(x))) is less than f( ) s W@ (%)J
For multiple inputs partial derivatives are used ie. 8 o f(x)

e——

Gradient vector is represented as V,f(x) «

Gradient descent proposes a new point as x’ :—5 where € is the learning rate
-

~
~
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Stochastic gradient descent

C€S551

e Large training set are necessary for good generalization

W
e Cost function used for optimization is J(6) = ;W

e Gradient descent requires VgJ(6) = L 57 VoL (x, () ) v~
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Stochastic gradient descent

C€S551

e Large training set are necessary for good generalization
e Cost function used for optimization is J(6) = L 5°7 [ (x(), (), @)
e Gradient descent requires VoJ(0) = L 37 VoL (x(, y() 0) 1o/

e Computation cost is O(m)

e

3 o
3 LS


Arijit

Arijit

Arijit

Arijit

Arijit


Stochastic gradient descent

C€S551

Large training set are necessary for good generalization

Cost function used for optimization is J(0) = L 3°7 L(x(), 1) )

Gradient descent requires Vg J(0) = £ 57 VoL(x(), )1} 9) - & Ve @
e Computation cost is O(m)

For SGD grad|ent |s an expectation estimated from a small sample known as m|n|batch

Estimated gradlent is g = ZVOL ,0) Y ﬂ A

New point will be @ = 6 — eg” w,
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SGD example

C€S551

e Consider the following pair (x, y) of points - (1,2), (2,4), (3,6), (4,8)
SRR St T ANt B L i .
e Let us try to fit a curve as follows y=WxX where w is initialized mt@ learning rate as

0.1 5 o) lesming rate
o MSE as cost function. Derivative will be
Step Point Derivative New w , .
1o a0 9 @ p - 01x2 =38
2wy 2(3en-4)=0) 35— ol x 71z
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SGD example

C€S551

e Consider the following pair (x, y) of points - (1,2), (2,4), (3,6), (4,8)

e Let us try to fit a curve as follows y = w x x where w is initialized with 4, learning rate as
0.1

e MSE as cost function. Derivative will be x(w x x — y)

Step Point Derivative New w
1 (1,2) 1%(4.0%1-2)=2.0 3.80




SGD example

C€S551

e Consider the following pair (x, y) of points - (1,2), (2,4), (3,6), (4,8)

e Let us try to fit a curve as follows y = w x x where w is initialized with 4, learning rate as
0.1

e MSE as cost function. Derivative will be x(w x x — y)

Step Point Derivative New w
1 (1,2) 1%(4.0%1-2)=2.0 3.80
2 (2,4) 2x%(3.8%2-4)=7.2 3.08




SGD example

e Consider the following pair (x, y) of points - (1,2), (2,4), (3,6), (4,8) | e
— e
e Let us try to fit a curve as follows y = w x x where w is initialized with 4, learning rate as

C€S551

0.1

e MSE as cost function. Derivative will be x(w x x — y) @
Step Point Derivative New w
| (1,2) 1%(4.0%1-2)=2.0  3.80 ty) )
2 (2,4) 2%(3.8%2-4)=7.2 3.08
3 (3,6) 3%(3.1%3-6)=9.7 2.11
4 (4,8) 4x%(2.1%4-8)=1.7 1.94
5 (1,2) 1*%(1.9%1-2)=-0.1 1.94
6 (2,4) 2%(1.9%2-4)=-0.2 1.971
7 (3,6) 3*%(2.0%3-6)=-0.3 1.99
8 (4,) 4%(2.0%4-8)=-0.1 ¢(2.00 w/
9 1#(2.0%1-2)=0.0 2.00%
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GD example

C€S551

e Consider the following pair (x, y) of points - (1,2), (2,4), (3,6), (4,8)

e Let us try to fit a curve as follows y = w x x where w is initialized with 4, learning rate as
0.1

e MSE as cost function. Derivative will be ix,-(w X X; — Yi)

Step Derivative New w
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GD example

C€S551

e Consider the following pair (x, y) of points - (1,2), (2,4), (3,6), (4,8)

e Let us try to fit a curve as follows y = w x x where w is initialized with 4, learning rate as
0.1

e MSE as cost function. Derivative will be > xi(w x x; — y;)

Step Derivative New w
1 15 2.5

=
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GD example

C€S551

e Consider the following pair (x, y) of points - (1,2), (2,4), (3,6), (4,8)

e Let us try to fit a curve as follows y = w x x where w is initialized with 4, learning rate as
0.1

e MSE as cost function. Derivative will be 1>, x(w x x; — y;)

Step Derivative New w
1 15 2.5
2 3.75 2.13




GD example

C€S551

e Consider the following pair (x, y) of points - (1,2), (2

0.1

e MSE as cost function. Derivative will be 1>, x(w x x; — y;)

4), (3,6), (4,8)
e Let us try to fit a curve as follows y = w x x where w is initialized with 4, learning rate as

bt &
— 0

Step
1

[G2BNr = GVI ]

Derivative
15

3.75

0.94

0.23

0.06

New w
2.5 <
2.13
2.03
2.01 ~

2.00 v
—

L1, (1) —\”}
3_» 36) (k) —
Q\,@—BU;W,) (_%IU -5

> Ml lug) <4



Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit


Cost function

C€S551

Similar to other parametric model like linear models

Parametric model defines distribution p(@]@;

Principle of maximum likelihood is used (cross entropy between training data and model
prediction)

w
Instead of predicting the whole distribution of y, some statistic of /y) conditioned on x is
predicted - -

It can also contain regularization term
Cotidlzdtion

wog A 2
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Maximum likelihood estimation

C€S551

Consider a set of m examples X = {x(l), e ,x(’")}v(arawn independently from the true but
unknown data generating distribution pyata(x) .
InKnown

Let pmode,(x;@) be a parametric family of probability distribution
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Maximum likelihood estimation

C€S551

e Consider a set of m examples X = {x(l), e ,x(’")} drawn independently from the true but
unknown data generating distribution pya¢.(x)

o Let prode(x; ) be a parametric family of probability distribution
e Maximum likelihood estimator for 0 is defined as

N
OpL = argmax Pmode/(®; 0) = arg max
¥ t1 '
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Maximum likelihood estimation

C€S551

Consider a set of m examples X = {x(l), e ,x(’")} drawn independently from the true but
unknown data generating distribution pya¢.(x)

Let prmodel(x; @) be a parametric family of probability distribution

Maximum likelihood estimator for @ is defined as

OpL = arg max Pmodel(X; 8) = arg max Pmodel(x7; )

m
It can be written as 0y, = arg Ingx@log pmode/(x(i); (7]
i=1) "
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Maximum likelihood estimation

C€S551

Consider a set of m examples X = {x(l), e ,x(’")} drawn independently from the true but
unknown data generating distribution pya¢.(x)

Let pmodel(x; @) be a parametric family of probability distribution
Maximum likelihood estimator for 6 is defined as

Omi = arg Max pmodel(X; 0) = arg max 11 Prmodel(x”; 0)

It can be written as GML = arg maleog Pmodel(X 9//\/1/\/

— I—

By dividing m we get GML = arg mdlog Pmodel(X; @) /
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Maximum likelihood estimation (cont.)

C€S551

e Minimizing dissimilarity between the empirical f)d;{/a/and model distribution p,oqer and it is
T——

measured by KL divergenc
~ N w
DKL(pdataHpmodel) = arg [10g pdata(x) - log Pmodel(x;] %‘
il — —_—

e
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Maximum likelihood estimation (cont.)

C€S551

Minimizing dissimilarity between the empirical py.:s and model distribution p,,04er and it is
measured by KL divergence

Dk (Pdatall Pmoder) = arg min Exp,... [10g Pdata(X) — 10g Pmodel(x; )]
0 PR e——

We need to minimize f—\arg min Bx-p,, 108 Pmodel(x; )
WUy wax B Joy kwmt%@') X/
F oy g P
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Conditional log-likelihood

C€S551

e In most of the supervised learning we estimate P(y|x; 8) ~~

e If X be the all inputs and Y be observed targets then conditional maximum likelihood
estimator is Oy = arg max P(l]X; 0)

e If the examples are assumed to be i.i.d then we can say
m -

OmL = argmax Y log Py |x"; 0

ML = argmax ' og P(y"|x\"; 9)

?’I'
i=1 —_—
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Linear regression as maximum likelihood

C€S551

e Instead of producing single prediction y for a glven X, we assume the model produces condi-
tional distribution p(y| )

e For infinitely large training set, we can observe multiple examples having the same x but
different values of y

e Goal is to fit the distribution p(y|x)
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Linear regression as maximum likelihood

C€S551

Instead of producing single prediction y for a given x, we assume the model produces condi-
tional distribution p(y|x)

For infinitely large training set, we can observe multiple examples having the same x but
different values of y

Goal is to fit the distribution p(y|x)
Let us assume, p(y|x) = N (y; x;@),@)
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Linear regression as maximum likelihood

C€S551

Instead of producing single prediction y for a given x, we assume the model produces condi-
tional distribution p(y|x)

For infinitely large training set, we can observe multiple examples having the same x but
different values of y

Goal is to fit the distribution p(y|x)
Let us assume, p(yx) = N (y; y(x;w), o?)
Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

> log p(Q x7; ) -
i=1 =
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Linear regression as maximum likelihood

C€S551

Instead of producing single prediction y for a given x, we assume the model produces condi-
tional distribution p(y|x)

e For infinitely large training set, we can observe multiple examples having the same x but
- v
different va.Iues of y @Lm(ﬁ' )
e Goal is to fit the distribution p(y|x) \ 0 W

Let us assume, p(y|x) = N (y; y(x;w), 0?) = e

Since the examples are assumed to be i.i.d, conditional Iog—likeliho&is given by

@ N DR

Mm@“\ﬁ Zlogp ‘ (?ml ga——lo (27‘(’)@220_2”} g
/
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Learning conditional distributions

C€S551

Usually neural networks are trained using maximum likelihood. Therefore the cost function

is negative log-likelihood. Also known as cross entropy between training data and model
distribution

Cost function J(0) = —Ex v.p,... 108 Pmodel(y|x, 8) 7"

Uniform across different models @Jb
Gradient of cost function is very much crucial S
e Large and predictable gradient can serve good guide for learning process |
e Function that saturates will have small gradient v @
[ & Activation function usually produces values in a bounded zone (saturates)
e Negative log-likelihood can overcome some of the problems ,{ﬂ)@ da()
—

e Qutput unit having exp function can saturate for high negative value v*~
e Log-likelihood cost function undoes the exp of some output functions }\'MZJ ot

L, (22
—®
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Learning conditional statistics

C€S551

e Instead of learning the whole distribution p(y|x; @), we want to learn one conditional statistics
of y given x

e For a predicting function f(x; ), we would like to predict the mean of y
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Learning conditional statistics

C€S551

e Instead of learning the whole distribution p(y|x; @), we want to learn one conditional statistics
of y given x

e For a predicting function f(x; @), we would like to predict the mean of y

e Neural network can represent any function f from a very wide range of functions w~

e Range of function is limited by features like continuity, boundedness, etc.

—_—
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Learning conditional statistics

C€S551

Instead of learning the whole distribution p(y|x; @), we want to learn one conditional statistics
of y given x

e For a predicting function f(x; @), we would like to predict the mean of y

Neural network can represent any function f from a very wide range of functions

Range of function is limited by features like continuity, boundedness, etc.

Cost function becomes functional rather than a function
OSt Tunc

———

SNa R
N

) > %
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Learning conditional statistics

C€S551

e Need to solve the optimization problem

2
ﬁ_argr?IEx,YNPdaraHy_@x)” w §

—
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Learning conditional statistics

C€S551

e Need to solve the optimization problem
F* = arg min Ex v~ pg,q |y —@x) |1~

e Using calculus of variation, it gives (f*(x)) = Eywpdata(y‘le[y]?

e Mean of y for each value of x
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Learning conditional statistics

C€S551

e Need to solve the optimization problem
I?

f* = arg m}n Eny"‘Pdata ||y - f(X)

——

e Using calculus of variation, it gives @x) = Evepputyix) Y
e Mean of y for each value of x

e Using a different cost function @— argr%n EX Yrpgally — fX)|

-
—_——
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Learning conditional statistics

C€S551

e Need to solve the optimization problem

= argmin By p,.,ly — 9

e Using calculus of variation, it gives f*(x) = Ev.,_. (yx [V
e Mean of y for each value of x

e Using a different cost function f* = argm}n Ex Yepgelly — fX)||1 v~

e Median of y for each value of x

- —
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Calculus of variations

C€S551

e Let us consider functional Jy| = / L(x,@(x),@(x)) dx

X_IJW
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Calculus of variations

C€S551

2

e Let us consider functional Jy| = / L(x, y(x), Y (x)) dx

X1-

e Let J[y] has local minima at f. Therefore, we can say @S Jif+ ¢
e 7 is an arbitrary function of x such that n(x;) = n(x2) = 0 and differentiable ]
— —— —


Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit

Arijit


Calculus of variations

C€S551

2

e Let us consider functional Jy| = / L(x, y(x), Y (x)) dx
:

X1

e Let Jly| has local minima at . Therefore, we can say J[f] < J[f+ 7]
e 1) is an arbitrary function of x such that n(x;) = n(x2) = 0 and differentiable

P * dL
e Let us assume @ (=) = J[f+ ef)]. Therefore, &'(0) = o = / dt
de |._, N, de

= —
—

dx
e=0

=0
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Calculus of variations

C€S551

2

e Let us consider functional Jy| = / L(x, y(x), Y (x)) dx

X1

e Let Jly| has local minima at . Therefore, we can say J[f] < J[f+ 7]
e 1) is an arbitrary function of x such that n(x;) = n(x2) = 0 and differentiable

P * dL
e Let us assume @ (=) = J[f+ en]. Therefore, ¢’'(0) = o = / dt
de |._, L de

1 e=0 —
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Calculus of variations

C€S551

Let us consider functional J[y]

=] U8 P

Let J[y| has local minima at f. Therefore, we can say J[f] < J[f+ 7]
e 1) is an arbitrary function of x such that n(x;) = n(x2) = 0 and differentiable

D X2 dL
Let us assume ®(c) = J[f+ en]. Therefore, ®'(0) = d = / dt
0 X

Now we can say,

dL

Es

d
de x

1 de e=0

8Ldy+%% o
dyde 0y de

0
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Calculus of variations

C€S551

Let us consider functional Jy| = / L(x, y(x), Y (x)) dx

Let J[y| has local minima at f. Therefore, we can say J[f] < J[f+ 7]
e 1) is an arbitrary function of x such that n(x;) = n(x2) = 0 and differentiable

dx

D X2 dL
Let us assume ®(c) = J[f+ en]. Therefore, ®'(0) = o = / d
0 X e=0

de de
dL  oLdy OLdy
Now we can say, — = — —

= Oyde 0y de

As we have y = f+enand y =1 + 1, therefore,
& j) g

1

0
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Calculus of variations

C€S551

Let us consider functional Jy| = / ) L(x, y(x), Y (x)) dx /z

X1

Let J[y| has local minima at f. Therefore, we can say J[f] < J[f+ 7]

e 1) is an arbitrary function of x such that n(x;) = n(x2) = 0 and differentiable
P %
Let us assume ®(g) = J[f+ en]. Therefore, '(0) = o / dt dx
de |._, o dEl_o
dl _dLdy OLdy

Now we can say, —

& avd

dL
As we have y = f+¢en and y = 1 + 1/, therefore, R



Arijit

Arijit

Arijit

Arijit

Arijit

Arijit


Calculus of variations (contd.)

C€S551

e Now we have

< gl oL oL N\
o — E0) d
/Xl &l ™ / <8f Uaap vl ) x
W \OF0f7)
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Calculus of variations (contd.)

C€S551

e Now we have

@ dl (AL LR
— = — ') d
/Xl de e=0 o /X1 ( afn +) x )

— X2 % _ i% d +8L -
~ ). \of! Taxar ) U 9

X1

-
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Calculus of variations (contd.)

C€S551

e Now we have

[ &
x, dE

2 (oL oL
E=OdX _/Xl (af +W )dX

_ [T(oL, _, 4oLy ot
= ). \of! Taxar ) T o
Jo \OF" "dx0f)

oL
of

dot
dx of

e Hence /Xz@
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Calculus of variations (contd.)

C€S551

e Now we have

gl “ oL ol
_— dx = ey
/Xl |, & / (af”+af”) dx

_/X2 % _ i% d + oL
~ ). \of" Taxar ) T o

° Hence/ n<2¢—i{g?> dx=10
oL doL

Euler-L jon| 25— 492 _
o buler-Lagrange equation) or = 1 o7

N4
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Example

C€S551

e Let us consider distance between two points Aly| / V]2 )dx v

e y'(x) = %, n=1fx), y»=flx) Q : C"BA

pal

[4
w’\
®
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Example

C€S551

e Let us consider distance between two points Aly| / v 1 2 dx
d
¢« V(=2 n=Ax), y=1fx)
L doL
e We have, oL dob 0 where L = /1 + [f(x)]?

of dxof ——
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Example

C€S551

e Let us consider distance between two points Aly|] = / V 1+ [y (x)]?dx
V(=2 y=fx). =)

d oL
£z — — = = 2
e We have, %) 7 0 where L 1+ [f(x)]

d oL
e As fdoes not appear explicitly in L, hence/—— =0
dx Of
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Example

C€S551

Let us consider distance between two points Aly| / v 1 2 dx

d
« V(=20 n="Ax), yo=1fx)
L doL
We have, ?91‘ dgf’ =0 where L = /1 + [f(x)]2”

d
As f does not appear explicitly in L, hence d 0

Now we have, i f’(X)

dx ,/1+
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Example

C€S551

d*f T
e Taking derivative we get W =0
X
T+ [P |
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Example

C€S551

e Taking derivative we get — -

dx?

e Therefore we have, if =0
dx?

1

VIR |

=0
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C€S551

d’f 1

e Taking derivative we get —— - 7 =0
* [VIFFOR |
e Therefore we have, 2= 0

Yo —w1 X2y1 — X1Y2
and b= ———~
X2 — X1 X2 — X1

e Hence we have f(x) = mx+ b with m =

>T
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Output units

C€S551

e Choice of cost function is directly related with the choice of output function
OSt Tunctic output Tunctic

e In most cases cost function is determined by cross entropy between data and model dis-
tribution

e Any kind of output unit can be used as hidden unit
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Linear units

C€S551

Suited for Gaussian output distribution

Given features h, linear output unit producesO: L@ﬁ”
This can be treated as conditional probability p y\ y y@

Maximizing log-likelihood is equivalent to minimizing mean square error
e el SARdE 2T

- —

MSE
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Sigmoid unit

C€S551

Mostly suited for binary classification problem that is Bernoulli output distribution

The neural networks need to predict p(y = 1|®) CTJ?OW)M,
e If linear unit has been chosen, p(y Wmax {0, min{d,&

e Gradient? —

Model should have strong gradient whenever the answer is
-_ - =

wrong
Let us assume unnormallzed log probability is linea |t2_(
T _ exp(yz) Y

, P(y exp yz ye{o 1}exp(yz)’ C)—-J

e It can be written as P

_O 2y—1 ﬂéo/i

The loss function for maximum I|ke||hood is

4(6)

= —log P(ylx) =

Sloga((2y— 1)2) =(C(1 - 20)2) WW

7

T - !
£z dog Ur axhlo) |
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Softmax unit

C€S551

Similar to sigmoid. Mostly suited for multinoulli distribution

We need to predict a vector y such that M

A linear layer predicts unnormallzed probabilities z = W h + b that is z; = log IB(y = i|x)
) v 2 S

;exp(z)l

Lo%géslc? -li %Ilrggop can undo expm— —(log

e What about incorrect prediction? |

A

Formally, softmax(z)

Invariant to addition of some scalar to all input variables ie. %

softmax(z) = softmax(z +c) | L)qu@a @
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Hidden units

C€S551

Active area of research and does not have good guiding theoretical principle

Usually rectified linear unit (ReLU) is chosen in most of the cases

Design process consists of trial and error, then the suitable one is chosen

.

Some of the activation functions are not differentiable (eg. ReLU)
e Still gradient descent performs well

e Neural network does not converge to local minima but reduces the value of cost function
to a very small value

wmi%“]

G
\_>
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Generalization of RelLU

C€S551

ReLU is defined as g(z) = max{0, z} ~~
Using non-zero slope, h; = g(z, ); = max(0, z; @nnn 0, z)w
e Absolute value rectification will make a; = —1 and g(z) = |2

Leaky RelLU assumes very small values for a; v

Parametric RelLU tries to learn «; parameters

Maxout unit = max(z; £
viaxou! g( )l €6 'j

e Suitable for learning piecewise linear function
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Logistic sigmoid & hyperbolic tangent

C€S551

Logistic sigmoid g(z) = o(z) v~
Hyperbolic tangent g(z) = tanh(z) v M 7—%
e tanh(z) = 20(2z) — 1 ‘

Widespread saturation of sigmoidal unit is an issue for gradient based learning

=

e Usually discouraged to use as hidden units 1
Usually, hyperbolic tangent function performs better where sigmoidal function must be

used T

e Behaves linearly at 0

e Sigmoidal activation function are more common in settings other than feedforward net-
work
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Other hidden units

C€S551

Differentiable functions are usually preferred
Activation function h = CB\S(‘VViiE) performs well for
Sometimes no activation function helps in reducing the number of parameters
Radial Basis Function - ¢(x,c) = ¢(||x — ¢||)

e Gaussian - exp(—(er)?)

Softplus - g(x) = ((x) = log(1 + exp(x))

Hard tanh - g(x) = max(—1, min(1, x))

Hidden unit design is an active area of research
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Architecture design

C€S551

e Structure of neural network (chain based architecture)
e Number of layers
e Number of units in each layer
e Connectivity of those units
e Single hidden layer is sufficient to fit the training data
e Often deeper networks are preferred
e Fewer number of units | U

e Fewer number of parameters |
e Difficult to optimize &

>

S O 3 9
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