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Neural Networks
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Human brain vs von Neumann computer
• Massive parallelism
• Distributed representation and computation
• Learning ability
• Generalization ability
• Adaptability
• Inherent contextual information processing
• Fault tolerance
• Low energy consumption
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Computer vs Brain

von Neumann Neural system

Processor Complex, high speed, one or a few Simple, low speed, a large number

Memory
Separate from processor, Local-
ized, Noncontent addressable

Integrated into processor, Dis-
tributed, Content addressable

Computing
Centralized, sequential, stored
program

Distributed, parallel, self-learning

Reliability Very vulnerable Robust

Expertise
Numeric and symbolic manipula-
tions

Perceptual problems

Operating envi-
ronment

Well defined, well constrained Poorly defined, unconstrained
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Artificial Neuron: Applications
• Pattern classification
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Artificial Neuron: Applications
• Clustering/categorization
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Artificial Neuron: Applications
• Prediction

t
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Artificial Neuron: Applications
• Retrieval
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Artificial Neuron: Applications
• Optimization
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Artificial Neuron
• Control

Engine

Feedback

Controller
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History
• Started in 1940s by McCulloch and Pitt
• Rosenblatt perceptron convergence theorem (1960)
• In 1980s ANN started gaining popularity
• Again became popular after 2006
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Biological Neuron

Image source: Internet
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Cerebral cortex
• It is a flat sheet of neurons about 2-3 millimeter thick with surface area is 2200 cm2

• Twice the area of computer keyboard
• It contains around 1011 neurons

• Number of stars in the Milky-way
• Each neuron is connected to 103-104 other neurons
• Total connections is around 1014-1015

• Connectionist model
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Human brain

Image source: Internet
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Neuron
• One of the primitive models
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Artificial Neuron
• Neuron pre-activation function

• a(x) =
∑

i
wixi + b = b + wTx

• Neuron output activation function

• h(x) = g(a(x)) = g
(∑

i
wixi + b

)
• Notations

• w — Weight vector
• b — Neuron bias
• g(.) — Activation function 1 x1 . . . xk

b
w1

wk
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Physical interpretation
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Classification using single neuron
• Single neuron can do binary classification

• Also known as logistic regression classifier

x1 x2 x1

x2
R1

R2
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Artificial neuron
• Can solve linearly separable problems

x1

x2

OR(x1,x2) AND(~x1,x2)

x1

x2

AND(x1,~x2)
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Artificial neuron: XOR problem
• There are issues for linear separation

XOR(x1,x2)

x1

x2

XOR(x1,x2)

A
N

D
(x

1,
~x

2)

AND(~x1,x2)
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Activation function
• Linear activation function

• Not very interesting
• No change in values
• Huge range

g(x) = x
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Activation function
• Sigmoid function

• Values lie between 0 and 1
• Strictly increasing function
• Bounded

g(x) = sigm(x) = 1

1 + exp(−x)
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Activation function
• Hyperbolic Tangent (Tanh) function

• Can be positive or negative
• Values lie between -1 and 1
• Strictly increasing function
• Bounded

g(x) = tanh(x) = exp(x)− exp(−x)
exp(x) + exp(−x)
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Activation function
• Rectified linear activation function

• Bounded below by 0
• Strictly increasing function
• Not upper bounded

g(x) = reclin(x) = max(0, x)
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Single hidden layer neural network
• Hidden layer pre-activation

a(x) = b1 + w1x

• Hidden layer activation

h(x) = g(a(x))

• Output layer activation

f(x) = o(b(2) + w(2)Th1(x))

x1 xi xk 1

h(x)i
1

w1
i,j b1i

f(x)

w(2)
i

b(2)
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Multi layer neural network
• Pre-activation in layer

k > 0 (h(0)(x) = x)

a(k)(x) = b(k) + W(k)h(k−1)x
• Hidden layer activation

h(k)(x) = g(a(k)(x))
• Output layer activation

h(L+1)(x) = o(a(L+1)(x)) = f(x)

x1 . . . xj . . . xk 1

h1(x) . . . . . . 1

W1 b1

h2(x) . . . . . . 1

W2 b2

f(x)

W3
b3

Arijit

Arijit

Arijit

Arijit

Arijit



CS
55

1

27

Multiclass classification
• Need multiple outputs that is one neuron for each class
• Need to determine probability of p(y = c|x)
• Softmax activation function is used at the output

o(a) = softmax(a) =
[

exp(a1)∑
c exp(ac)

exp(a2)∑
c exp(ac)

. . .
exp(ac)∑
c exp(ac)

]T

• Strictly positive
• Sum to 1
• Class having the highest probability will be the predicted output
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Capacity of neural network
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Capacity of neural network
• Universal approximation theorem (Hornik,1991)

• A single hidden layer neural network with a linear output unit can approximate any
continuous function arbitrarily well, given enough hidden units.

• The result is applicable for other hidden layer activation functions such as sigmoid, tanh,
etc.

• This is a promising result, but it does not say that there is a learning algorithm to find the
necessary parameter values!
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Types of Neural Network
• Feed forward neural network
• Radial basis function network
• Recurrent neural network
• Boltzmann machine
• Long short term memory network
• and many more
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Perceptron
• Simplest form of neural network

— Input — Output
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Feed Forward
• With single hidden layer only

— Input — Output — Hidden
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Radial Basis Function
• Typically it will have 3 layers
• Distance from a center vector is computed
• Radial basis function as activation o =

∑
i

ai exp(β(x − c)2)

• Usage - function approximation, time series prediction, classification, system control

— Input — Output — Hidden
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Deep Feed Forward
• Can have multiple hidden layers
• More complicated functions can be represented

— Input — Output — Hidden
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Recurrent Neural Network
• It has feedback loop
• Used for modelling dependencies such as temporal

— Input — Output — Hidden
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Long Short Term Memory
• Feedback loop with memory
• Application - NLP, time series modeling

— Input — Output — Memory
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Auto Encoder
• Learning the data in unsupervised mode
• Dimensionality reduction

— Input — Output
— Hidden
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Markov chain

— Memory
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Boltzmann Machine
• Stochastic network
• Each neuron can have value either 0 or 1
• Some are hidden neurons
• Total energy (computed using states and the edge weights) is minimized

— Input — Hidden
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Learning the parameters
• The network must learn the connection weights from available training examples
• Learning can be

• Supervised
• Unsupervised
• Hybrid

• Four basic types of learning rule
• Error correction rule
• Boltzmann learning
• Hebbian
• Competitive learning
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Error correction rule
• Output is generated based on the weight values but this may vary from desired value
• The error information is used to update the weight value
• Perceptron learning algorithm

• Initialize the weights and threshold to small random numbers
• Present a pattern vector and evaluate the output of neuron
• Update the weight according to wj(t + 1) = wj(t) + η(d − y)xj

• Back propagation algorithm

Arijit

Arijit

Arijit

Arijit



CS
55

1

42

Boltzmann learning
• Usually symmetric recurrent network consisting of binary units
• A subset of neurons interact with environment
• Generally it has two modes

• Clamped — Visible neurons are clamped to specific states
• Free-running - Visible and hidden unit operate freely

• Stochastic learning rule derived from information theoretic and thermodynamic principles
• Learning rule is given by ∆wij = η(ρ̄ij − ρij)
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Hebbian rule
• One of the oldest learning rules
• If neuron on both sides of a synapse are activated synchronously and repeatedly, the

synapse’s strength is selectively increased
• Mathematically, it can be described as wij(t + 1) = wij(t) + ηyj(t)xi(t)
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Competitive learning rule
• Output units compete among themselves for activation
• Only one output is active at time
• Also known as winner-take-all
• Mathematically, it can be represented as wi∗x ≥ wix
• Competitive learning rule can be stated as

∆wij =

{
η(xu

j − wi∗j) i = i∗
0 i ̸= i∗
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Summary
• Error correction rule — Single or multilayer perceptron

• Pattern classification, function approximation, prediction, control
• Boltzmann — Recurrent

• Pattern classification
• Hebbian — Multilayer feed forward

• Pattern classification, data analysis
• Competitive

• Within class categorization, data compression
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