
CS5511

Introduction to Deep Learning

Arijit Mondal
Dept. of Computer Science & Engineering

Indian Institute of Technology Patna

arijit@iitp.ac.in

CS
55
1

2

Feature Engineering

CS
55
1

3

Machine Learning
• A form of applied statistics with

• Increased emphasis on the use of computers to statistically estimate complicated function
• Decreased emphasis on proving confidence intervals around these functions

• Two primary approaches
• Frequentist estimators
• Bayesian inference

CS
55
1

4

Types of Machine Learning Problems
• Supervised
• Unsupervised
• Other variants

• Reinforcement learning
• Semi-supervised

CS
55
1

5

Learning algorithm
• A ML algorithm is an algorithm that is able to learn from data
• Mitchelle (1997)

• A computer program is said to learn from experience E with respect to some class of
task T and performance measure P, if its performance at task in T as measured by P,
improves with experience E.

CS
55
1

6

Task
• A ML task is usually described in terms of how ML system should process an example

• Example is a collection of features that have been quantitatively measured from some
objects or events that we want the learning system process
• Represented as x ∈ Rn where xi is a feature
• Feature of an image — pixel values

CS
55
1

7

Common ML Task
• Classification

• Need to predict which of the k categories some input belongs to
• Need to have a function f : Rn → {1, 2, . . . , k}
• y = f(x) input x is assigned a category identified by y
• Examples

• Object identification
• Face recognition

• Regression
• Need to predict numeric value for some given input
• Need to have a function f : Rn → R
• Examples

• Energy consumption
• Amount of insurance claim

CS
55
1

8

Common ML Task (contd.)
• Classification with missing inputs

• Need to have a set of functions
• Each function corresponds to classifying x with different subset of inputs missing
• Examples

• Medical diagnosis (expensive or invasive)

• Transcription
• Need to convert relatively unstructured data into discrete, textual form

• Optical character recognition
• Speech recognition

• Machine translation
• Conversion of sequence of symbols in one language to some other language

• Natural language processing (English to Spanish conversion)

CS
55
1

8

Common ML Task (contd.)
• Classification with missing inputs

• Need to have a set of functions
• Each function corresponds to classifying x with different subset of inputs missing
• Examples

• Medical diagnosis (expensive or invasive)
• Transcription

• Need to convert relatively unstructured data into discrete, textual form
• Optical character recognition
• Speech recognition

• Machine translation
• Conversion of sequence of symbols in one language to some other language

• Natural language processing (English to Spanish conversion)

CS
55
1

8

Common ML Task (contd.)
• Classification with missing inputs

• Need to have a set of functions
• Each function corresponds to classifying x with different subset of inputs missing
• Examples

• Medical diagnosis (expensive or invasive)
• Transcription

• Need to convert relatively unstructured data into discrete, textual form
• Optical character recognition
• Speech recognition

• Machine translation
• Conversion of sequence of symbols in one language to some other language

• Natural language processing (English to Spanish conversion)

CS
55
1

9

Common ML Task (contd.)
• Structured output

• Output is a vector with important relationship between the different elements
• Mapping natural language sentence into a tree that describes grammatical structure
• Pixel based image segmentation (eg. identify roads)

• Anomaly detection
• Observes a set of events or objects and flags if some of them are unusual

• Fraud detection in credit card
• Synthesis and sampling

• Generate new example similar to past examples
• Useful for media application
• Text to speech

CS
55
1

9

Common ML Task (contd.)
• Structured output

• Output is a vector with important relationship between the different elements
• Mapping natural language sentence into a tree that describes grammatical structure
• Pixel based image segmentation (eg. identify roads)

• Anomaly detection
• Observes a set of events or objects and flags if some of them are unusual

• Fraud detection in credit card

• Synthesis and sampling
• Generate new example similar to past examples

• Useful for media application
• Text to speech

CS
55
1

9

Common ML Task (contd.)
• Structured output

• Output is a vector with important relationship between the different elements
• Mapping natural language sentence into a tree that describes grammatical structure
• Pixel based image segmentation (eg. identify roads)

• Anomaly detection
• Observes a set of events or objects and flags if some of them are unusual

• Fraud detection in credit card
• Synthesis and sampling

• Generate new example similar to past examples
• Useful for media application
• Text to speech

CS
55
1

10

Performance measure
• Accuracy is one of the key measures

• The proportion of examples for which the model produces correct outputs
• Similar to error rate

• Error rate often referred as expected 0-1 loss
• Mostly interested how ML algorithm performs on unseen data
• Choice of performance measure may not be straight forward

• Transcription
• Accuracy of the system at transcribing entire sequence
• Any partial credit for some elements of the sequence are correct

CS
55
1

11

Experience
• Kind of experience allowed during learning process

• Supervised
• Unsupervised

CS
55
1

12

Supervised learning
• Allowed to use labeled dataset
• Example — Iris

• Collection of measurements of different parts of Iris plant
• Each plant means each example
• Features

• Sepal length/width, petal length/width
• Also record which species the plant belong to

CS
55
1

13

Supervised learning (contd.)
• A set of labeled examples ⟨x1, x2, . . . , xn, y⟩

• xi are input variables
• y output variable

• Need to find a function f : X1 × X2 × . . .Xn → Y
• Goal is to minimize error/loss function

• Like to minimize over all dataset
• We have limited dataset

CS
55
1

14

Unsupervised learning
• Learns useful properties of the structure of data set
• Unlabeled data

• Tries to learn entire probability distribution that generated the dataset
• Examples

• Clustering, dimensionality reduction

CS
55
1

15

Supervised vs Unsupervised learning
• Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
• Supervised tries to predict y from x ie. p(y|x)

• Unsupervised learning can be decomposed as supervised learning

p(x) =
n∏

i=1

p(xi|x1, x2, . . . , xi−1)

• Solving supervised learning using traditional unsupervised learning

p(y|x) = p(x, y)∑
y′ p(x, y′)

CS
55
1

15

Supervised vs Unsupervised learning
• Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
• Supervised tries to predict y from x ie. p(y|x)
• Unsupervised learning can be decomposed as supervised learning

p(x) =
n∏

i=1

p(xi|x1, x2, . . . , xi−1)

• Solving supervised learning using traditional unsupervised learning

p(y|x) = p(x, y)∑
y′ p(x, y′)

CS
55
1

15

Supervised vs Unsupervised learning
• Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
• Supervised tries to predict y from x ie. p(y|x)
• Unsupervised learning can be decomposed as supervised learning

p(x) =
n∏

i=1

p(xi|x1, x2, . . . , xi−1)

• Solving supervised learning using traditional unsupervised learning

p(y|x) = p(x, y)∑
y′ p(x, y′)

CS
55
1

16

Linear regression
• Prediction of the value of a continuous variable

• Example — price of a house, solar power generation in photo-voltaic cell, etc.

• Takes a vector x ∈ Rn and predict scalar y ∈ R
• Predicted value will be represented as ŷ = wTx where w is a vector of parameters

• xi receives positive weight — Increasing the value of the feature will increase the value of y
• xi receives negative weight — Increasing the value of the feature will decrease the value of y
• Weight value is very high/large — Large effect on prediction

CS
55
1

16

Linear regression
• Prediction of the value of a continuous variable

• Example — price of a house, solar power generation in photo-voltaic cell, etc.
• Takes a vector x ∈ Rn and predict scalar y ∈ R

• Predicted value will be represented as ŷ = wTx where w is a vector of parameters
• xi receives positive weight — Increasing the value of the feature will increase the value of y
• xi receives negative weight — Increasing the value of the feature will decrease the value of y
• Weight value is very high/large — Large effect on prediction

CS
55
1

17

Performance
• Assume, we have m examples not used for training

• This is known as test set

• Design matrix of inputs is X(test) and target output is a vector y(test)

• Performance is measured by Mean Square Error (MSE)

MSE(test) =
1

m
∑

i

(
ŷ(test) − y(test)

)2
i
=

1

m∥ŷ(test) − y(test)∥22

• Error increases when the Euclidean distance between target and prediction increases
• The learning algorithm is allowed to gain experience from training set (X(train), y(train))

• One of the common ideas is to minimize MSE(train) for training set

CS
55
1

17

Performance
• Assume, we have m examples not used for training

• This is known as test set
• Design matrix of inputs is X(test) and target output is a vector y(test)

• Performance is measured by Mean Square Error (MSE)

MSE(test) =
1

m
∑

i

(
ŷ(test) − y(test)

)2
i
=

1

m∥ŷ(test) − y(test)∥22

• Error increases when the Euclidean distance between target and prediction increases

• The learning algorithm is allowed to gain experience from training set (X(train), y(train))

• One of the common ideas is to minimize MSE(train) for training set

CS
55
1

17

Performance
• Assume, we have m examples not used for training

• This is known as test set
• Design matrix of inputs is X(test) and target output is a vector y(test)

• Performance is measured by Mean Square Error (MSE)

MSE(test) =
1

m
∑

i

(
ŷ(test) − y(test)

)2
i
=

1

m∥ŷ(test) − y(test)∥22

• Error increases when the Euclidean distance between target and prediction increases
• The learning algorithm is allowed to gain experience from training set (X(train), y(train))

• One of the common ideas is to minimize MSE(train) for training set

CS
55
1

18

Minimization of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w − y(train)∥22 = 0

⇒ ∇w(X(train)w − y(train))T(X(train)w − y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w − 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w − 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T

CS
55
1

18

Minimization of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w − y(train)∥22 = 0

⇒ ∇w(X(train)w − y(train))T(X(train)w − y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w − 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w − 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T

CS
55
1

18

Minimization of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w − y(train)∥22 = 0

⇒ ∇w(X(train)w − y(train))T(X(train)w − y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w − 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w − 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T

CS
55
1

18

Minimization of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w − y(train)∥22 = 0

⇒ ∇w(X(train)w − y(train))T(X(train)w − y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w − 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w − 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T

CS
55
1

18

Minimization of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w − y(train)∥22 = 0

⇒ ∇w(X(train)w − y(train))T(X(train)w − y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w − 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w − 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T

CS
55
1

18

Minimization of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w − y(train)∥22 = 0

⇒ ∇w(X(train)w − y(train))T(X(train)w − y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w − 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w − 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T

CS
55
1

18

Minimization of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w − y(train)∥22 = 0

⇒ ∇w(X(train)w − y(train))T(X(train)w − y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w − 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w − 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T

CS
55
1

18

Minimization of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m∥ŷ(train) − y(train)∥22 = 0

⇒ 1
m∇w∥X(train)w − y(train)∥22 = 0

⇒ ∇w(X(train)w − y(train))T(X(train)w − y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w − 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w − 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)

• Linear regression with bias term ŷ = [wT w0][x 1]T

CS
55
1

19

Moore-Penrose Pseudoinverse
• Let A ∈ Rn×m

• Every A has pseudoinverse A+ ∈ Rm×n and it is unique
• AA+A = A
• A+AA+ = A+

• (AA+)T = AA+

• (A+A)T = A+A
• A+ = limα→0(ATA + αI)−1AT

• Example
• If A = [1 2]T then A+ = [15

2
5]

• If A =

 1 2
2 1
1 5

 then A+ =

[
0.121212 0.515152 −0.151515
0.030303 −0.121212 0.212121

]

CS
55
1

20

Regression example

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12 14

Y

X

wx

b

y

CS
55
1

21

Regression example

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12 14

Y

X

wx

b

y

CS
55
1

22

Example

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

CS
55
1

23

Example: Variation of MSE wrt w

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 0 5 10 15 20 25

M
S

E

w

CS
55
1

24

Example: Best fit

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

M
S

E

w

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002

xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001

gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001

gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936

xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122

gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122

gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672

xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184

gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184

gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531

xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938

gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938

gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162

xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409

gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409

gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845

xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934

gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934

gradient=0.0356 xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356

xnew=0.03087

CS
55
1

25

Gradient descent

y = 0.3x2, x0 = 3, α = 0.8 gradient=1.80002 xnew=1.56001gradient=0.936 xnew=0.81122gradient=0.48672 xnew=0.42184gradient=0.2531 xnew=0.21938gradient=0.13162 xnew=0.11409gradient=0.06845 xnew=0.05934gradient=0.0356 xnew=0.03087

CS
55
1

26

Minimization of MSE: Gradient descent
• Assuming MSE(train) = J(w1,w2)

• Target is to min
w1,w2

J(w1,w2)

• Approach
• Start with some w1,w2

• Keep modifying w1,w2 so that J(w1,w2) reduces till the desired accuracy is achieved

• Algorithm

• Repeat the following until convergence wj = wj −
∂

∂wj
J(w1,w2)

• Gradient descent proposes a new point as w′ = w − ϵ∇wf(w) where ϵ is the learning rate

CS
55
1

26

Minimization of MSE: Gradient descent
• Assuming MSE(train) = J(w1,w2)

• Target is to min
w1,w2

J(w1,w2)

• Approach
• Start with some w1,w2

• Keep modifying w1,w2 so that J(w1,w2) reduces till the desired accuracy is achieved
• Algorithm

• Repeat the following until convergence wj = wj −
∂

∂wj
J(w1,w2)

• Gradient descent proposes a new point as w′ = w − ϵ∇wf(w) where ϵ is the learning rate

CS
55
1

27

Error
• Training error - Error obtained on a training set
• Generalization error - Error on unseen data
• Data assumed to be independent and identically distributed (iid)

• Each data set are independent of each other
• Train and test data are identically distributed

• Expected training and test error will be the same
• It is more likely that the test error is greater than or equal to the expected value of training

error
• Target is to make the training error is small. Also, to make the gap between training and

test error smaller

CS
55
1

28

Regression example

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

CS
55
1

29

Regression example: degree 1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

CS
55
1

30

Regression example: degree 2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

CS
55
1

31

Regression example: degree 3

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

CS
55
1

32

Regression example: degree 4

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

CS
55
1

33

Regression example: degree 5

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

CS
55
1

34

Regression example: degree 6

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

CS
55
1

35

Underfitting & Overfitting
• Underfitting

• When the model is not able to obtain sufficiently low error value on the training set
• Overfitting

• When the gap between training set and test set error is too large

CS
55
1

36

Underfitting example

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

CS
55
1

37

Overfitting example

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

CS
55
1

38

Better fit

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14

Training
Test

CS
55
1

39

Capacity
• Ability to fit wide variety of functions

• Low capacity will struggle to fit the training set
• High capacity will can overfit by memorizing the training set

• Capacity can be controlled by choosing hypothesis space
• A polynomial of degree 1 gives linear regression ŷ = b + wx
• By adding x2 term, it can learn quadratic curve ŷ = b + w1x + w2x2

• Output is still a linear function of parameters
• Capacity is determined by the choice of model (Representational capacity)
• Finding best function is very difficult optimization problem

• Learning algorithm does not find the best function but reduces the training error
• Imperfection in optimization algorithm can further reduce the capacity of model (effective

capacity)

CS
55
1

40

Capacity (contd.)
• Occam’s razor

• Among equally well hypotheses, choose the simplest one
• Vapnik-Chervonenski dimension - Capacity for binary classifier

• Largest possible value of m for which a training set of m different x points that the
classifier can label arbitrarily

• Training and test error is bounded from above by a quantity that grows as model capacity
grows but shrinks as the number of training example increases
• Bounds are usually provided for ML algorithm and rarely provided for DL
• Capacity of deep learning model is difficult as the effective capacity is limited by opti-

mization algorithm
• Little knowledge on non-convex optimization

CS
55
1

41

Error vs Capacity

Image source: Deep Learning Book

CS
55
1

42

Non-parametric model
• Parametric model learns a function described by a parameter vector

• Size of vector is finite and fixed
• Nearest neighbor regression

• Finds out the nearest entry in training set and returns the associated value as the predicted
one

• Mathematically, for a given point x, ŷ = yi where i = arg min ∥Xi,: − x∥22
• Wrapping parametric algorithm inside another algorithm

CS
55
1

43

Bayes error
• Ideal model is an oracle that knows the true probability distribution for data generation
• Such model can make error because of noise

• Supervised learning
• Mapping of x to y may be stochastic
• y may be deterministic but x does not have all variables

• Error by an oracle in predicting from the true distribution is known as Bayes error

CS
55
1

44

Note
• Training and generalization error varies as the size of training set varies
• Expected generalization error can never increase as the number of training example increases
• Any fixed parametric model with less than the optimal capacity will asymptote to an error

value that exceeds the Bayes error
• It is possible to have optimal capacity but have large gap between training and generalization

error
• Need more training examples

CS
55
1

45

No free lunch
• Averaged over all possible data generating distribution, every classification algorithm has

same error rate when classifying unseen points
• No machine learning algorithm is universally any better than any other

CS
55
1

46

Regularization
• A set of preferences is applied to learning algorithm so that it performs well on a specific

task
• Weight decay - In linear regression, preference on the weights is introduced

• Sum of MSE and squared L2 norms of the weight is minimized ie.

J(w) = MSEtrain + λwTw

• λ = 0 - No preference
• λ becomes large - weight becomes smaller

• Regularization is intended to reduce test error not training error

CS
55
1

47

Example: Weight decay

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14

L=0
L=100

L=1000

CS
55
1

48

Hyperparameters
• Settings that are used to control the behavior of learning algorithm

• Degree of polynomial
• λ for decay weight

• Hyperparameters are usually not adapted or learned on the training set

CS
55
1

49

Validation set
• Test data should not be used to choose the model as well as hyperparameters
• Validation set is constructed from training set

• Typically 80% will be used for training and rest for validation
• Validation set may be used to train hyperparameters

CS
55
1

50

Cross validation
• Dividing data set into training and fixed test may result into small test set

• For large data this is not an issue
• For small data set use k-fold cross validation

• Partition the data in k disjoint subsets
• On i-th trial, i-th set used as the test set and rest are treated as training set
• Test error can be determined by averaging the test error across the k trials

CS
55
1

51

Point estimation
• To provide single best prediction of some quantity of interest
• Estimation of the relationship between input and output variables
• It can be single parameter or a vector of parameters

• Weights in linear regression
• Notation: true parameter — θ and estimate — θ̂

• Let {x(1), x(2), . . . , x(m)} be set of m independent and identically distributed point.
• A point estimator is a function θ̂m = g(x(1), x(2), . . . , x(m))

• Good estimator is a function whose output is close to θ
• θ is unknown but fixed
• θ̂ depends on data

CS
55
1

52

Bias
• Difference between this estimator’s expected value and the true value of the parameter

being estimated
• bias(θ̂m) = E(θ̂m)− θ

• An estimator will be said unbiased if bias(θ̂m) = 0

• E(θ̂m) = θ

• An estimator will be asymptotically unbiased if lim
m→∞

bias(θ̂m) = 0

CS
55
1

53

Estimator for Gaussian distribution
• Let us consider a set of samples {x(1), x(2), . . . , x(m)} that are independently and identically

distributed according to
p(x(i)) = N (x(i);µ, σ2) ∀i = 1, 2, . . . ,m

• Gaussian mean estimator (aka sample mean) — µ̂m =
1

m

m∑
i=1

x(i)

• Bias of sample mean
bias(µ̂m) = E(µ̂m)− µ = E

(
1

m

m∑
i=1

x(i)
)

− µ

=

(
1
m

m∑
i=1

E
(

x(i)
))

− µ =

(
1

m

m∑
i=1

µ

)
− µ = µ− µ = 0

CS
55
1

53

Estimator for Gaussian distribution
• Let us consider a set of samples {x(1), x(2), . . . , x(m)} that are independently and identically

distributed according to
p(x(i)) = N (x(i);µ, σ2) ∀i = 1, 2, . . . ,m

• Gaussian mean estimator (aka sample mean) — µ̂m =
1

m

m∑
i=1

x(i)

• Bias of sample mean
bias(µ̂m) = E(µ̂m)− µ = E

(
1

m

m∑
i=1

x(i)
)

− µ

=

(
1
m

m∑
i=1

E
(

x(i)
))

− µ =

(
1

m

m∑
i=1

µ

)
− µ = µ− µ = 0

CS
55
1

53

Estimator for Gaussian distribution
• Let us consider a set of samples {x(1), x(2), . . . , x(m)} that are independently and identically

distributed according to
p(x(i)) = N (x(i);µ, σ2) ∀i = 1, 2, . . . ,m

• Gaussian mean estimator (aka sample mean) — µ̂m =
1

m

m∑
i=1

x(i)

• Bias of sample mean
bias(µ̂m) = E(µ̂m)− µ

= E

(
1

m

m∑
i=1

x(i)
)

− µ

=

(
1
m

m∑
i=1

E
(

x(i)
))

− µ =

(
1

m

m∑
i=1

µ

)
− µ = µ− µ = 0

CS
55
1

53

Estimator for Gaussian distribution
• Let us consider a set of samples {x(1), x(2), . . . , x(m)} that are independently and identically

distributed according to
p(x(i)) = N (x(i);µ, σ2) ∀i = 1, 2, . . . ,m

• Gaussian mean estimator (aka sample mean) — µ̂m =
1

m

m∑
i=1

x(i)

• Bias of sample mean
bias(µ̂m) = E(µ̂m)− µ = E

(
1

m

m∑
i=1

x(i)
)

− µ

=

(
1
m

m∑
i=1

E
(

x(i)
))

− µ =

(
1

m

m∑
i=1

µ

)
− µ = µ− µ = 0

CS
55
1

53

Estimator for Gaussian distribution
• Let us consider a set of samples {x(1), x(2), . . . , x(m)} that are independently and identically

distributed according to
p(x(i)) = N (x(i);µ, σ2) ∀i = 1, 2, . . . ,m

• Gaussian mean estimator (aka sample mean) — µ̂m =
1

m

m∑
i=1

x(i)

• Bias of sample mean
bias(µ̂m) = E(µ̂m)− µ = E

(
1

m

m∑
i=1

x(i)
)

− µ

=

(
1
m

m∑
i=1

E
(

x(i)
))

− µ

=

(
1

m

m∑
i=1

µ

)
− µ = µ− µ = 0

CS
55
1

53

Estimator for Gaussian distribution
• Let us consider a set of samples {x(1), x(2), . . . , x(m)} that are independently and identically

distributed according to
p(x(i)) = N (x(i);µ, σ2) ∀i = 1, 2, . . . ,m

• Gaussian mean estimator (aka sample mean) — µ̂m =
1

m

m∑
i=1

x(i)

• Bias of sample mean
bias(µ̂m) = E(µ̂m)− µ = E

(
1

m

m∑
i=1

x(i)
)

− µ

=

(
1
m

m∑
i=1

E
(

x(i)
))

− µ =

(
1

m

m∑
i=1

µ

)
− µ

= µ− µ = 0

CS
55
1

53

Estimator for Gaussian distribution
• Let us consider a set of samples {x(1), x(2), . . . , x(m)} that are independently and identically

distributed according to
p(x(i)) = N (x(i);µ, σ2) ∀i = 1, 2, . . . ,m

• Gaussian mean estimator (aka sample mean) — µ̂m =
1

m

m∑
i=1

x(i)

• Bias of sample mean
bias(µ̂m) = E(µ̂m)− µ = E

(
1

m

m∑
i=1

x(i)
)

− µ

=

(
1
m

m∑
i=1

E
(

x(i)
))

− µ =

(
1

m

m∑
i=1

µ

)
− µ = µ− µ = 0

CS
55
1

54

Estimator for Gaussian distribution (cont)
• Sample variance

• σ̂2
m =

1

m

m∑
i=1

(x(i) − µ̂m)
2

• Bias of sample variance bias(σ̂2
m) = E(σ̂2

m)− σ2

• It can be shown that, E(σ̂2
m) =

m − 1

m σ2

CS
55
1

54

Estimator for Gaussian distribution (cont)
• Sample variance

• σ̂2
m =

1

m

m∑
i=1

(x(i) − µ̂m)
2

• Bias of sample variance bias(σ̂2
m) = E(σ̂2

m)− σ2

• It can be shown that, E(σ̂2
m) =

m − 1

m σ2

CS
55
1

55

Trade off Bias and Variance
• Bias — Expected deviation from the true value of the function parameter
• Variance — Measure of deviation from the expected estimator value
• Choice of estimator — large bias or large variance?

• Use cross-validation
• Compare Mean Square Error

MSE = E(θ̂m − θ)2 = bias(θ̂m)
2 + Var(θ̂m)

CS
55
1

56

Trade off Bias and Variance (cont)

Image source: Deep Learning Book

CS
55
1

57

Logistic regression
• Responses may be qualitative (categorical)

• Example: ⟨Hours of study, pass/fail⟩, ⟨MRI scan, benign/malignant⟩
• Output should be 0 or 1

• Predicting qualitative response is known as classification
• Linear regression does not help

CS
55
1

58

Issues with linear regression

CS
55
1

59

Logistic regression

CS
55
1

60

Logistic model
• Linear regression model to represent probability p(x) = w0 + w1x

• To avoid problem, we use function p(x) = ew0+w1x

1 + ew0+w1x

• Quantity p(x)
1−p(x) = ew0+w1x is known as odds

• Taking log on both the sides, we get log
(

p(x)
1− p(x)

)
= w0 + w1x

• Coefficient can be determined using maximum likelihood
• l(w0,w1) =

∏
i:yi=1

p(xi)
∏

j:yj=0

p(xj)

CS
55
1

61

Logistic model (contd.)
• Similar to linear regression except the output is mapped between 0 and 1 ie.

p(y|x,θ) = σ(θTx)

where σ(x) = 1

1 + exp(−x) (Sigmoid function)

CS
55
1

62

Support Vector Machine
• An approach for classification
• Developed in 1990s
• Generalization of maximum margin classifier

• Mostly limited to linear boundary
• Support vector classifier — broad range of classes
• SVM — Non-linear class boundary

CS
55
1

63

Hyperplane
• In n dimensional space a hyperplane is a flat affine subspace of dimension n − 1

• Mathematically it is defined as
• For 2 dimensions — w0 + w1x1 + w2x2 = 0
• For n dimensions — w0 + w1x1 + . . .+ wnxn = 0

CS
55
1

64

Classification using Hyperplane
• Assume, m training observation in n dimensional space

• Separating hyperplane has the property
• w0 + w1x1 + . . .+ wnxn > 0 if yi = 1
• w0 + w1x1 + . . .+ wnxn < 0 if yi = −1

• Hence, yi(w0 + w1x1 + . . .+ wnxn) > 0

• Classification of test observation x∗ is done based
on the sign of
f(x∗) = w0 + w1x∗1 + . . .+ wnx∗n

• Magnitude of f(x∗)
• Far from 0 — Confident about prediction
• Close to 0 — Less certain

CS
55
1

64

Classification using Hyperplane
• Assume, m training observation in n dimensional space
• Separating hyperplane has the property

• w0 + w1x1 + . . .+ wnxn > 0 if yi = 1
• w0 + w1x1 + . . .+ wnxn < 0 if yi = −1

• Hence, yi(w0 + w1x1 + . . .+ wnxn) > 0

• Classification of test observation x∗ is done based
on the sign of
f(x∗) = w0 + w1x∗1 + . . .+ wnx∗n

• Magnitude of f(x∗)
• Far from 0 — Confident about prediction
• Close to 0 — Less certain

CS
55
1

64

Classification using Hyperplane
• Assume, m training observation in n dimensional space
• Separating hyperplane has the property

• w0 + w1x1 + . . .+ wnxn > 0 if yi = 1
• w0 + w1x1 + . . .+ wnxn < 0 if yi = −1

• Hence, yi(w0 + w1x1 + . . .+ wnxn) > 0

• Classification of test observation x∗ is done based
on the sign of
f(x∗) = w0 + w1x∗1 + . . .+ wnx∗n

• Magnitude of f(x∗)
• Far from 0 — Confident about prediction
• Close to 0 — Less certain

CS
55
1

65

Maximal margin classifier
• Also known as optimal separating hyperplane
• Separating hyperplane farthest from training ob-

servation
• Compute perpendicular distance from training

point to the hyperplane
• Smallest of these distances represents the mar-

gin
• Target is to find the hyperplane for which the

margin is the largest

CS
55
1

66

Construction of maximal margin classifier
• Input — m points in n dimension space ie. x1, x2, . . . , xm

• Input — labels y1, y2, . . . , ym for each point xi where yi ∈ {−1, 1}
• Need to solve the following optimization problem

max
w0,w1,...,wn,M

M

subject to
yi(w0 + w1xi1 + wi2 + . . .+ winxin) ≥ M ∀i = 1, . . . ,m

n∑
i=1

w2
i = 1

CS
55
1

67

Issues
• Maximal margin classifier fails to provide classification in case of overlap

CS
55
1

68

Issues
• Single observation point can change the hyperplane drastically

CS
55
1

69

Support Vector Classifier
• Provides greater robustness to individual observations
• Better classification of most of the training observations
• Worthwhile to misclassify a few training observations
• Also known as soft margin classifier

CS
55
1

70

Support Vector Classifier
• Points can lie within the margin or wrong side of hyperplane

CS
55
1

71

Optimization with misclassification
• Input — x1, x2, . . . , xm and y1, y2, . . . , ym

• Need to solve the following optimization problem
max

w0,w1,...,wn,M
M

subject to
yi(w0 + w1xi1 + . . .+ winxin) ≥ M(1− ϵi) ∀i = 1, . . . ,m

n∑
i=1

w2
i = 1,

m∑
i=1

ϵi = C

• C is non-negative tuning parameter, ϵi - slack variable
• Classification of test observation remains the same

CS
55
1

72

Observations
• ϵi = 0 — ith observation is on the correct side of margin
• ϵi > 0 — ith observation is on the wrong side of margin
• ϵi > 1 — ith observation is on the wrong side of hyperplane
• C — budget for the amount that the margin can be violated by m observations

• C = 0 — No violation, ie. maximal margin classifier
• C > 0 — No more than C observation can be on the wrong side of hyperplane
• C is small — Narrow margin, highly fit to data, low bias and high variance
• C is large — Fitting data is less hard, more bias and may have less variance

CS
55
1

73

Classification with non-linear boundaries

CS
55
1

74

Classification with non-linear boundaries
• Performance of linear regression can suffer for non-linear data
• Feature space can be enlarged using function of predictors

• For example, instead of fitting with x1, x2, . . . , xn features we could use
x1, x21, x2, x22 . . . , xn, x2n as features

• Optimization problem becomes
max

w0,w11,w12...,wn1,wn2,ϵi,M
M

subject to

yi

w0 +

n∑
j=1

wj1xij +
n∑

j=1

wj2x2ij

 ≥ M(1− ϵi) ∀i = 1, . . . ,m

n∑
i=1

2∑
j=1

w2
ij = 1,

m∑
i=1

ϵi ≤ C, ϵi ≥ 0

CS
55
1

75

Support Vector Machine
• Extension of support vector classifier that results from enlarging feature space

• It involves inner product of the observations f(x) = w0 +

m∑
i=1

αi⟨x, xi⟩ where αi - one per

training example
• To estimate αi and w0, we need m(m − 1)/2 inner products, ⟨xi, xi′⟩

• It turns out that αi ̸= 0 for support vectors
f(x) = w0 +

∑
i∈S

αi⟨x, xi⟩ where S - set of support vectors

CS
55
1

76

Support Vector Machine
• Inner product is replaced with kernel, K or K(xi, xi′)

• Kernel quantifies similarity between observations K(xi, xi′) =
∑n

j=1 xijxi′j
• Above one is Linear kernel ie. Pearson correlation

• Polynomial kernel K(xi, xi′) =
(
1 +

∑n
j=1 xijxi′j

)d
where d is positive integer > 1

• Support vector classifier with non-linear kernel is known as support vector machine and the
function will look

f(x) = w0 +
∑
i∈S

αiK(x, xi)

• Radial kernel: K(xi, xi′) = exp
(
−γ
∑n

i=1(xij − xi′j)2
)

where γ > 0

CS
55
1

77

Challenges for Deep Learning
• Curse of dimensionality
• Local constancy and smoothness regularization
• Manifold learning

