CS321: Computer Architecturel

Introduction

Arijit Mondal
Dept. of Computer Science & Engineering

Indian Institute of Technology Patna

arijit@iitp.ac.in

IIT Patna

Books to be followed

C€S321

Computer Organization and Design: The Hardware/Software Interface (MIPS Edition) - David
A. Patterson, John L. Hennessy

Computer Organization and Architecture - William Stallings
Computer Architecture: A Quantitative Approach - David A. Patterson, John L. Hennessy
Computer Systems: A Programmer’s Perspective - Randal E. Bryant, David R. O’Hallaron

Class information

C€S321

Monday — 0900-1000
Tuesday — 1000-1100
Wednesday — 1100-12000
Room No — 301

Evaluation

C€S321

e 2 class tests - 20%
e Midsem — 30%
e Endsem — 50%

Introduction

IIT Patna

Abstraction of computing systems

C€S321

Application

Physics

Abstraction of computing systems

C€S321

Application

Algorithms

Physics

Abstraction of computing systems

C€S321

Application

Algorithms

Programming language

Physics

Abstraction of computing systems

C€S321

Application

Algorithms

Programming language

Operating systems

Physics

Abstraction of computing systems

C€S321

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Physics

Abstraction of computing systems

C€S321

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Microarchitecture

Physics

Abstraction of computing systems

C€S321

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Microarchitecture

Register transfer level

Physics

Abstraction of computing systems

C€S321

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Microarchitecture

Register transfer level

Gates

Physics

Abstraction of computing systems

C€S321

Application

Algorithms

Programming language

Operating systems

Instruction set architecture

Microarchitecture

Register transfer level

Gates

Circuits

Physics

Abstraction of computing systems

C€S321

Application

Algorithms

Programming language

Operating systems

Gates

Circuits

Physics

Abstraction of computing systems

C€S321

Application

Algorithms

Programming language

Gates

Circuits

Physics

Operating systems \

e Application Requirements:

e Suggest how to improve architecture
e Provide revenue to fund development

e Architecture provides feedback to guide ap-
plication and technology research directions

e Technology Constraints:

e Restrict what can be done efficiently
e New technologies make new arch possi-
ble

Abstraction

C€S321

e Abstraction helps us to deal with complexity
e Hide lower level details

e Instruction set architecture
e Hardware/Software interface

e Application binary interface
e ISA plus system software

e Implementation
e The details underlying and interface

Components of a Computer

C€S321

e Same components for all kind of computers
e Server, Desktop, Embedded systems

Components of a Computer

C€S321

e Same components for all kind of computers
e Server, Desktop, Embedded systems

e Input-Output support

Components of a Computer

C€S321

e Same components for all kind of computers
e Server, Desktop, Embedded systems

e Input-Output support

e User interface devices - Keyboard, mouse, display
e Storage devices - Hard disk, CD/DVD, Flash
o Network adapters for communicating with others

Components of a Computer

C€S321

e Same components for all kind of computers
e Server, Desktop, Embedded systems

e Input-Output support

e User interface devices - Keyboard, mouse, display
e Storage devices - Hard disk, CD/DVD, Flash
o Network adapters for communicating with others

e Inside the computer

Components of a Computer

C€S321

e Same components for all kind of computers
e Server, Desktop, Embedded systems

e Input-Output support
e User interface devices - Keyboard, mouse, display
e Storage devices - Hard disk, CD/DVD, Flash
o Network adapters for communicating with others

e Inside the computer
Arithmetic logic unit (ALU)
Program control unit
Memory

Datapath

IAS Computer

C€S321

Arithmetic Logic
Unit

IAS Computer

C€S321

Arithmetic Logic
Unit

Program control
Unit

IAS Computer

C€S321

Main
Memory

Arithmetic Logic
Unit

Program control
Unit

IAS Computer

C€S321

Main
Memory

Arithmetic Logic
Unit

Program control
Unit

Input
Output

IAS Computer

C€S321

Main
Memory

A

Y

Arithmetic Logic
Unit

A

Y

A

Y

Program control
Unit

Y

A

Y

Input
Output

Expanded structure of IAS Computer

C€S321

i Arithmatic logic unit (ALU)

Mo

1 ‘ Arithmatic logic circuit ‘

Input
Output
equipment

]
| Br | | pc |

Y vy ¢
Cw] [
v

Lo

Control Control
Circuits Ly signals

Program control unit

l

Main
Memory

Top level view of computer

C€S321

Execution
Unit

1/0 Module

Main memory

Instruction

Instruction

Data

Data

Data

Buffers

Basic instruction cycle

C€S321

Fetch cyle

Execute cycle

Fetch next

Start ‘

instruction

Execute

Instruction

Levels of Program Code

C€S321

[T

h x i ;
jHis
h[1] ;

e High level language
e Easy to code & debug
e Close to problem domain
e Provides productivity

Levels of Program Code

C€S321

g=h=x1i;
k=3+1i;
g = h[1] ;

e High level language
e Easy to code & debug
e Close to problem domain
e Provides productivity

Levels of Program Code

C€S321

g=hx*i; e High level language
k=j+1; e Easy to code & debug
g = h[1] ;

e Close to problem domain

e Provides productivity

MUL RO, R1, R2 ;
e Assembly language

ADD R3, R4, R2 . . .
LDR R3, [RO,#4] e Textual representation of instructions

Levels of Program Code

C€S321

g=hx*i; e High level language
k=j+1; e Easy to code & debug
g = h[1] ;

e Close to problem domain

Compiler e Provides productivity

4

MUL RO, R1, R2 ;
ADD R3, R4, R2
LDR R3, [RO,#4]

e Assembly language
e Textual representation of instructions

Levels of Program Code

C€S321

g=h=x1i;
k=3j+1;
g = h[1] ;

Compiler

4

MUL RO, R1, R2 ;
ADD R3, R4, R2
LDR R3, [RO,#4]

0000101101000010101
1010101111100101010
1010101011110000011

e High level language

e Easy to code & debug
e Close to problem domain
e Provides productivity

e Assembly language
e Textual representation of instructions

e Hardware language

e Binary data
e Encoded instruction and data

Machine Model

C€S321

Stack Accumulator Reg-Mem Reg-Reg
S <] <] S
(7] (7] (7] (7]
%] 1% L %] L 1%
Q Q Q Q
[o [o
< <t < <t
a a a a
> = > el
o o o o
£ 1 IS 1 £ 1 €
[} [} [} ()
= = = =
push A load A load r1, A load r1,A
push B add B add r3,r1, B load r2,B
add store C store r3, C add r3,r2,r1
store r3,c

pop C

Understanding Performance

C€S321

Algorithms
e Determines number of operation executed

Programing language, compiler, architecture
e Determine number of machine instructions is executed per operation

Processor and memory systems
e Determines how fast instructions are executed

1/0 systems
e Determines how fast I/0 operations are performed

Performance

C€S321

e Response time
e How long it takes to finish a task

e Throughput
e Total workdone per unit time (eg. task/transaction/per hour)

e Dependency of response time and throughput

e Replacing the processor with a faster version?
o Adding more processors?

Relative performance

C€S321

e Performance is defined as 1/Execution time
e Xis n times faster thanY
e Performancex/Performancey = Execution timey/Execution timex = n

e Example: Time taken to run a program
e 10ns in machine X and 15ns in machine Y
e Execution timey/Execution timex = 15/10 = 1.5
e So, X is 1.5 times faster than Y

Measuring performance

C€S321

e Elapsed time (Wall clock time)
e Total time to complete a task including 1/0, memory access, disk access, OS overhead, etc.
e CPU time

e The time the CPU spends computing this task
e Does not include 1I/0 time, other jobs’ share
e Can be further subdivided - user CPU time and system CPU time

e Different programs are affected differently by CPU and system performance

CPU clocking

C€S321

e Operation is controlled by a constant rate clock
e Clock period is duration of clock cycle. (eg. 300ns = 300 x 10~ %s)

e Clock frequency is cycles per second. (eg. 4GHz =4 x 10°Hz)
e Clock period = 1/Clock frequency

CPU Time

C€S321

CPU clock cycle

e CPU time = CPU clock cycles x Clock period =
Clock frequency

e Performance can be improved by
e Reducing number of clock cycle
e Increasing clock frequency
e Hardware designer must trade off clock frequency against cycle count

Example

C€S321

e Machine A: Run time 10s, Clock speed 2GHz
e Design a new machine (B say)

e Run time is 6s
e Faster clock require 1.2 times more clock cycles compared to A

e Clock frequency for machine B?

Instruction count and CPI

C€S321

Clock cycles = Instruction count x Cycles per instruction

CPU time = Instruction count X CPI X Clock period =

Instruction count for a program
e Depends on ISA, compiler, program

Average cycles per instruction

e Determined by CPU hardware

e Different instruction have different CPI

e Average CPI is affected by instruction mix

Instruction count x CPI

Clock frequency

CPI example

C€S321

Machine A: Clock period - 250ps, CPI - 2.0
Machine B: Clock period - 500ps, CPI - 1.2

Same set of instructions
Which is faster ?

CPI in more detail

C€S321

e Different instructions take different cycles

n
e Clock cycles = Z(CPI,- X Instruction count;)
i=1

. Clock cycle : Instruction count;
e Weighted average CPI = - = Z CPI; x -
Instruction count Instruction count

CPIl example

C€S321

Instruction A
CPI for instruction 1
IC in Sequence 1 2
IC in Sequence 2 4

= = N W

e Which code sequence executes the most instructions?

e Compute average CPI for each sequence.

= N W N

Performance summary

C€S321

. Instructions Clock cycles second
e CPU Time =

Program % Instruction 8 Clock cycle

e Performance depends on

Algorithm - Affects IC, possibly CPI

Programming language - Affects IC, CPI

Compiler - Affects IC, CPI

Instruction set architecture - Affects IC, CPI, Clock period

Performance: Power

C€S321

e Power x Capacitive load x Voltage? x Frequency

e Suppose a new CPU has the following
e 85% of capacitive load of old CPU
o 15% reduction in voltage, 15% reduction in frequency
. Poew - 0.85 x Cold X (Vo/d X 085)2 X Foig X 0.85
Poid Coid X (Void)? X Forg
e Constarints

e Further reduction in voltage may not be possible
e Dissipation of heat

= 0.85* = 0.52

MIPS as performance metric

C€S321

e MIPS: Millions of Instruction Per Second
e Does not account for

e Differences in ISAs in computers
e Differences in complexity between instructions

Instruction count Instruction count

_ Clock frequency

e MIPS = =

Execution time % 106 Instruction count X CPI X 106
Clock frequency

e CPI varies between programs on a given CPU

CPI x 106

Multiprocessors

C€S321

e Multicore multiprocessors
e More than one processor per chip

e Requires explicit parallel programming
e Instruction level parallelism
e Hardware executes multiple instructions simultaneously
e Hidden from programmer
e Hard to do
e Programming for performance

e Load balancing
e Optimizing communication and synchronization

Conclusion

C€S321

Cost/performance is improving

e Due to underlying technology development
Hierarchical layer of abstraction

e In both hardware and software

Instruction set architecture

e The Hardware/Software interface
Execution time - measure of performance

Power is a limiting factor
e Use parallelism to improve performance

