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Books to be followed
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Computer Organization and Design: The Hardware/Software Interface (MIPS Edition) - David
A. Patterson, John L. Hennessy

Computer Organization and Architecture - William Stallings
Computer Architecture: A Quantitative Approach - David A. Patterson, John L. Hennessy
Computer Systems: A Programmer’s Perspective - Randal E. Bryant, David R. O’Hallaron



Class information
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Monday — 0900-1000
Tuesday — 1000-1100
Wednesday — 1100-12000
Room No — 301



Evaluation
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e 2 class tests - 20%
e Midsem — 30%
e Endsem — 50%
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Abstraction of computing systems
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Application

Algorithms
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Circuits
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Operating systems \

e Application Requirements:

e Suggest how to improve architecture
e Provide revenue to fund development

e Architecture provides feedback to guide ap-
plication and technology research directions

e Technology Constraints:

e Restrict what can be done efficiently
e New technologies make new arch possi-
ble



Abstraction

C€S321

e Abstraction helps us to deal with complexity
e Hide lower level details

e Instruction set architecture
e Hardware/Software interface

e Application binary interface
e ISA plus system software

e Implementation
e The details underlying and interface
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Components of a Computer
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e Same components for all kind of computers
e Server, Desktop, Embedded systems

e Input-Output support
e User interface devices - Keyboard, mouse, display
e Storage devices - Hard disk, CD/DVD, Flash
o Network adapters for communicating with others

e Inside the computer
Arithmetic logic unit (ALU)
Program control unit
Memory

Datapath
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Expanded structure of IAS Computer
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Top level view of computer
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Basic instruction cycle
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Levels of Program Code
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g=h=x1i;
k=3j+1;
g = h[1] ;

Compiler

4

MUL RO, R1, R2 ;
ADD R3, R4, R2
LDR R3, [RO,#4]

0000101101000010101
1010101111100101010
1010101011110000011

e High level language

e Easy to code & debug
e Close to problem domain
e Provides productivity

e Assembly language
e Textual representation of instructions

e Hardware language

e Binary data
e Encoded instruction and data



Machine Model
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pop C




Understanding Performance
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Algorithms
e Determines number of operation executed

Programing language, compiler, architecture
e Determine number of machine instructions is executed per operation

Processor and memory systems
e Determines how fast instructions are executed

1/0 systems
e Determines how fast I/0 operations are performed



Performance
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e Response time
e How long it takes to finish a task

e Throughput
e Total workdone per unit time (eg. task/transaction/per hour)

e Dependency of response time and throughput

e Replacing the processor with a faster version?
o Adding more processors?



Relative performance
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e Performance is defined as 1/Execution time
e Xis n times faster thanY
e Performancex/Performancey = Execution timey/Execution timex = n

e Example: Time taken to run a program
e 10ns in machine X and 15ns in machine Y
e Execution timey/Execution timex = 15/10 = 1.5
e So, X is 1.5 times faster than Y



Measuring performance
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e Elapsed time (Wall clock time)
e Total time to complete a task including 1/0, memory access, disk access, OS overhead, etc.
e CPU time

e The time the CPU spends computing this task
e Does not include 1I/0 time, other jobs’ share
e Can be further subdivided - user CPU time and system CPU time

e Different programs are affected differently by CPU and system performance



CPU clocking

C€S321

e Operation is controlled by a constant rate clock
e Clock period is duration of clock cycle. (eg. 300ns = 300 x 10~ %s)

e Clock frequency is cycles per second. (eg. 4GHz =4 x 10°Hz)
e Clock period = 1/Clock frequency



CPU Time
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CPU clock cycle

e CPU time = CPU clock cycles x Clock period =
Clock frequency

e Performance can be improved by
e Reducing number of clock cycle
e Increasing clock frequency
e Hardware designer must trade off clock frequency against cycle count



Example
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e Machine A: Run time 10s, Clock speed 2GHz
e Design a new machine (B say)

e Run time is 6s
e Faster clock require 1.2 times more clock cycles compared to A

e Clock frequency for machine B?



Instruction count and CPI
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Clock cycles = Instruction count x Cycles per instruction

CPU time = Instruction count X CPI X Clock period =

Instruction count for a program
e Depends on ISA, compiler, program

Average cycles per instruction

e Determined by CPU hardware

e Different instruction have different CPI

e Average CPI is affected by instruction mix

Instruction count x CPI

Clock frequency



CPI example
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Machine A: Clock period - 250ps, CPI - 2.0
Machine B: Clock period - 500ps, CPI - 1.2

Same set of instructions
Which is faster ?



CPI in more detail

C€S321

e Different instructions take different cycles

n
e Clock cycles = Z(CPI,- X Instruction count;)
i=1

. Clock cycle : Instruction count;
e Weighted average CPI = - = Z CPI; x -
Instruction count Instruction count




CPIl example
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Instruction A
CPI for instruction 1
IC in Sequence 1 2
IC in Sequence 2 4

= = N W

e Which code sequence executes the most instructions?

e Compute average CPI for each sequence.

= N W N



Performance summary
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. Instructions  Clock cycles second
e CPU Time =

Program % Instruction 8 Clock cycle

e Performance depends on

Algorithm - Affects IC, possibly CPI

Programming language - Affects IC, CPI

Compiler - Affects IC, CPI

Instruction set architecture - Affects IC, CPI, Clock period



Performance: Power
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e Power x Capacitive load x Voltage? x Frequency

e Suppose a new CPU has the following
e 85% of capacitive load of old CPU
o 15% reduction in voltage, 15% reduction in frequency
. Poew - 0.85 x Cold X (Vo/d X 085)2 X Foig X 0.85
Poid Coid X (Void)? X Forg
e Constarints

e Further reduction in voltage may not be possible
e Dissipation of heat

= 0.85* = 0.52




MIPS as performance metric
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e MIPS: Millions of Instruction Per Second
e Does not account for

e Differences in ISAs in computers
e Differences in complexity between instructions

Instruction count Instruction count

_ Clock frequency

e MIPS = =

Execution time % 106 Instruction count X CPI X 106
Clock frequency

e CPI varies between programs on a given CPU

CPI x 106



Multiprocessors
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e Multicore multiprocessors
e More than one processor per chip

e Requires explicit parallel programming
e Instruction level parallelism
e Hardware executes multiple instructions simultaneously
e Hidden from programmer
e Hard to do
e Programming for performance

e Load balancing
e Optimizing communication and synchronization



Conclusion
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Cost/performance is improving

e Due to underlying technology development
Hierarchical layer of abstraction

e In both hardware and software

Instruction set architecture

e The Hardware/Software interface
Execution time - measure of performance

Power is a limiting factor
e Use parallelism to improve performance



