Discrete Mathematics

Graphs-I

Arijit Mondal
Dept of CSE
arijit@iitp.ac.in

Use of graphs

- Mathematically, a graph is a relation
- Abstract representation of many problems

Use of graphs

- Mathematically, a graph is a relation
- Abstract representation of many problems
- Example
- How can we lay cable at minimum cost to make every telephone reachable from every other?

Use of graphs

- Mathematically, a graph is a relation
- Abstract representation of many problems
- Example
- How can we lay cable at minimum cost to make every telephone reachable from every other?
- What is the fastest route from the national capital to each state capital?

Use of graphs

- Mathematically, a graph is a relation
- Abstract representation of many problems
- Example
- How can we lay cable at minimum cost to make every telephone reachable from every other?
- What is the fastest route from the national capital to each state capital?
- How can n jobs be filled by n people with maximum total utility?

Use of graphs

- Mathematically, a graph is a relation
- Abstract representation of many problems
- Example
- How can we lay cable at minimum cost to make every telephone reachable from every other?
- What is the fastest route from the national capital to each state capital?
- How can n jobs be filled by n people with maximum total utility?
- How can you prepare semester examination schedule for IIT Patna?

Use of graphs

- Mathematically, a graph is a relation
- Abstract representation of many problems
- Example
- How can we lay cable at minimum cost to make every telephone reachable from every other?
- What is the fastest route from the national capital to each state capital?
- How can n jobs be filled by n people with maximum total utility?
- How can you prepare semester examination schedule for IIT Patna?
- JEE seat allocation!!

Graphs

- A graph $G=(V, E)$ with m vertices and n edges consists of
- A vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$
- An edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ where $e_{i}=\left(v_{k}, v_{k^{\prime}}\right)$
- Here, v_{k} and $v_{k^{\prime}}$ are the two end points of the edge
- If there is a edge between v_{i} and v_{j}, then they are adjacent and are neighbor.

Graphs

- A graph $G=(V, E)$ with m vertices and n edges consists of
- A vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$
- An edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ where $e_{i}=\left(v_{k}, v_{k^{\prime}}\right)$
- Here, v_{k} and $v_{k^{\prime}}$ are the two end points of the edge
- If there is a edge between v_{i} and v_{j}, then they are adjacent and are neighbor.
- We will consider only simple graph
- No loop
- A loop is an edge whose endpoints are equal

Graphs

- A graph $G=(V, E)$ with m vertices and n edges consists of
- A vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$
- An edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ where $e_{i}=\left(v_{k}, v_{k^{\prime}}\right)$
- Here, v_{k} and $v_{k^{\prime}}$ are the two end points of the edge
- If there is a edge between v_{i} and v_{j}, then they are adjacent and are neighbor.
- We will consider only simple graph
- No loop
- A loop is an edge whose endpoints are equal
- No multiple edges
- Multiple edges are the edges with same pair of end points.

Definition-I

- Complement graph
- The complement graph \bar{G} of a simple graph G is simple graph with vertex set $V(G)$ and $(u, v) \in E(\bar{G})$ if and only if $(u, v) \notin E(G)$, where $u, v \in V(G)$

Definition-I

- Complement graph
- The complement graph \bar{G} of a simple graph G is simple graph with vertex set $V(G)$ and $(u, v) \in E(\bar{G})$ if and only if $(u, v) \notin E(G)$, where $u, v \in V(G)$
- Clique
- A clique in a graph is a set of pairwise adjacent vertices

Definition-I

- Complement graph
- The complement graph \bar{G} of a simple graph G is simple graph with vertex set $V(G)$ and $(u, v) \in E(\bar{G})$ if and only if $(u, v) \notin E(G)$, where $u, v \in V(G)$
- Clique
- A clique in a graph is a set of pairwise adjacent vertices
- Independent set
- An independent set in a graph is a set of pairwise non-adjacent vertices

Definition-II

- Bipartite graph
- A graph is bipartite if $V(G)$ is the union of two disjoint (possibly empty) independent sets called partite sets of G

Definition-II

- Bipartite graph
- A graph is bipartite if $V(G)$ is the union of two disjoint (possibly empty) independent sets called partite sets of G
- Chromatic number
- The chromatic number of a graph G, denoted as $\chi(G)$ is the minimum number of colors needed to label the vertices so that adjacent vertices receive different colors
- A graph is k-partite if $V(G)$ can be expressed as the union of k independent sets.

Definition-III

- Path
- A path is a simple graph whose vertices can be ordered so that two vertices are adjacent if and only if they are consecutive in the list

Definition-III

- Path
- A path is a simple graph whose vertices can be ordered so that two vertices are adjacent if and only if they are consecutive in the list
- Cycle
- A cycle is a graph with an equal number of vertices and edges whose vertices can be placed around a circle so that two vertices are adjacent if and only if they appear consecutively along the circle

Definition-IV

- Subgraph
- A subgraph of a graph G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ and the assignment of endpoints to edges in H is the same as in G. This is denoted as $H \subseteq G$ and we say ' G contains H '.

Definition-IV

- Subgraph
- A subgraph of a graph G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ and the assignment of endpoints to edges in H is the same as in G. This is denoted as $H \subseteq G$ and we say ' G contains H '.
- Connected graph
- A graph G is connected if each pair of vertices in G belongs to a path, otherwise, G is disconnected.

Definition-V

- Isomorphism
- An isomorphism from a simple graph G to a simple graph H is a bijection $f: V(G) \rightarrow V(H)$ such that $(u, v) \in E(G)$ if and only if $(f(u), f(v)) \in E(H)$. We say G is isomorphic to H and denoted as $G \cong H$, if there is an isomorphism from G to H

Definition-V

- Isomorphism
- An isomorphism from a simple graph G to a simple graph H is a bijection $f: V(G) \rightarrow V(H)$ such that $(u, v) \in E(G)$ if and only if $(f(u), f(v)) \in E(H)$. We say G is isomorphic to H and denoted as $G \cong H$, if there is an isomorphism from G to H
- Isomorphic relation is an equivalence relation on the set of simple graph
- It satisfies reflexive, symmetric, and transitive properties.

Example-I

- Which of the following graphs are isomorphic

Example-II

- How many different graphs are possible with n vertices? What are the isomorphic classes when $n=4$?

Example-II

- How many different graphs are possible with n vertices? What are the isomorphic classes when $n=4$?

Example-II

- How many different graphs are possible with n vertices? What are the isomorphic classes when $n=4$?

Example-II

- How many different graphs are possible with n vertices? What are the isomorphic classes when $n=4$?

Example-II

- How many different graphs are possible with n vertices? What are the isomorphic classes when $n=4$?

Example-II

- How many different graphs are possible with n vertices? What are the isomorphic classes when $n=4$?

Example-II

- How many different graphs are possible with n vertices? What are the isomorphic classes when $n=4$?

Example-II

- How many different graphs are possible with n vertices? What are the isomorphic classes when $n=4$?
0

Definition-VI

- Complete graph
- A complete graph is a simple graph whose vertices are pairwise adjacent

Definition-VI

- Complete graph
- A complete graph is a simple graph whose vertices are pairwise adjacent
- Notations
- P_{n} - path with n vertices

Definition-VI

- Complete graph
- A complete graph is a simple graph whose vertices are pairwise adjacent
- Notations
- P_{n} - path with n vertices
- C_{n} - cycle with n vertices

Definition-VI

- Complete graph
- A complete graph is a simple graph whose vertices are pairwise adjacent
- Notations
- P_{n} - path with n vertices
- C_{n} - cycle with n vertices
- K_{n} - complete graph with n vertices

Definition-VI

- Complete graph
- A complete graph is a simple graph whose vertices are pairwise adjacent
- Notations
- P_{n} - path with n vertices
- C_{n} - cycle with n vertices
- K_{n} - complete graph with n vertices
- $K_{n, m}$ - complete bipartite graph with with sets having n and m vertices

Definition-VII

- Decomposition
- A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list

Definition-VII

- Decomposition
- A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list
- A graph is self-complementary if it is isomorphic to its complement

Definition-VIII

- Automorphism
- An automorphism of G is an isomorphism from G to G

Definition-VIII

- Automorphism
- An automorphism of G is an isomorphism from G to G
- Vertex-transitive
- A graph G is vertex-transitive if for every pair $u, v \in V(G)$ there is an automorphism that maps u to v

Definition-VIII

- Automorphism
- An automorphism of G is an isomorphism from G to G
- Vertex-transitive
- A graph G is vertex-transitive if for every pair $u, v \in V(G)$ there is an automorphism that maps u to v
- Let G be the path with vertex set $\{1,2,3,4\}$ and edge set $\{12,23,34\}$. How many automorphism are there for this graph?

Definition-VIII

- Automorphism
- An automorphism of G is an isomorphism from G to G
- Vertex-transitive
- A graph G is vertex-transitive if for every pair $u, v \in V(G)$ there is an automorphism that maps u to v
- Let G be the path with vertex set $\{1,2,3,4\}$ and edge set $\{12,23,34\}$. How many automorphism are there for this graph?
- Count the number of automorphism for the graph $K_{r, s}$.

Definition-IX

- Walk
- A walk is a list of $v_{0}, e_{1}, v_{1}, \ldots, e_{k}, v_{k}$ of vertices and edges such that for $1 \leq i \leq k$, the edge e_{i} has endpoints v_{i-1} and v_{i}.

Definition-IX

- Walk
- A walk is a list of $v_{0}, e_{1}, v_{1}, \ldots, e_{k}, v_{k}$ of vertices and edges such that for $1 \leq i \leq k$, the edge e_{i} has endpoints v_{i-1} and v_{i}.
- Trail
- A trail is a walk with no repeated edge.

Definition-IX

- Walk
- A walk is a list of $v_{0}, e_{1}, v_{1}, \ldots, e_{k}, v_{k}$ of vertices and edges such that for $1 \leq i \leq k$, the edge e_{i} has endpoints v_{i-1} and v_{i}.
- Trail
- A trail is a walk with no repeated edge.
- A u, v-walk or u, v-trail has first vertex u and the last vertex v

Definition-IX

- Walk
- A walk is a list of $v_{0}, e_{1}, v_{1}, \ldots, e_{k}, v_{k}$ of vertices and edges such that for $1 \leq i \leq k$, the edge e_{i} has endpoints v_{i-1} and v_{i}.
- Trail
- A trail is a walk with no repeated edge.
- A u, v-walk or u, v-trail has first vertex u and the last vertex v
- The length of a walk, trail, path or cycle is its number of edges.

Definition-IX

- Walk
- A walk is a list of $v_{0}, e_{1}, v_{1}, \ldots, e_{k}, v_{k}$ of vertices and edges such that for $1 \leq i \leq k$, the edge e_{i} has endpoints v_{i-1} and v_{i}.
- Trail
- A trail is a walk with no repeated edge.
- A u, v-walk or u, v-trail has first vertex u and the last vertex v
- The length of a walk, trail, path or cycle is its number of edges.
- A walk or trail is closed if its endpoints are the same.

Example-III

- Prove that every u, v-walk contains a u, v-path.

Example-III

- Prove that every u, v-walk contains a u, v-path.
- Proof by induction: which variable to choose?

Example-III

- Prove that every u, v-walk contains a u, v-path.
- Proof by induction: which variable to choose?
- We use induction on the length of a u, v-walk W

Example-III

- Prove that every u, v-walk contains a u, v-path.
- Proof by induction: which variable to choose?
- We use induction on the length of a u, v-walk W
- Basis step: $I=0$ - Having no edge, W consists of a single vertex $(u=v)$. This vertex is a u, v-path of length 0

Example-III

- Prove that every u, v-walk contains a u, v-path.
- Proof by induction: which variable to choose?
- We use induction on the length of a u, v-walk W
- Basis step: $I=0$ - Having no edge, W consists of a single vertex $(u=v)$. This vertex is a u, v-path of length 0
- Induction step: $I \geq 1$. We assume that the claim holds for walks of length less than $/$.

Example-III

- Prove that every u, v-walk contains a u, v-path.
- Proof by induction: which variable to choose?
- We use induction on the length of a u, v-walk W
- Basis step: $I=0$ - Having no edge, W consists of a single vertex $(u=v)$. This vertex is a u, v-path of length 0
- Induction step: $I \geq 1$. We assume that the claim holds for walks of length less than $/$.
- If W has no repeated vertex then its vertices and edges form a u, v-path

Example-III

- Prove that every u, v-walk contains a u, v-path.
- Proof by induction: which variable to choose?
- We use induction on the length of a u, v-walk W
- Basis step: $I=0$ - Having no edge, W consists of a single vertex $(u=v)$. This vertex is a u, v-path of length 0
- Induction step: $I \geq 1$. We assume that the claim holds for walks of length less than $/$.
- If W has no repeated vertex then its vertices and edges form a u, v-path
- If W has repeated node w, then deleting the edges and vertices between appearances of w (leaving one copy of w) yields a shorter u, v-walk W contained in W.

Example-III

- Prove that every u, v-walk contains a u, v-path.
- Proof by induction: which variable to choose?
- We use induction on the length of a u, v-walk W
- Basis step: $I=0$ - Having no edge, W consists of a single vertex $(u=v)$. This vertex is a u, v-path of length 0
- Induction step: $I \geq 1$. We assume that the claim holds for walks of length less than $/$.
- If W has no repeated vertex then its vertices and edges form a u, v-path
- If W has repeated node w, then deleting the edges and vertices between appearances of w (leaving one copy of w) yields a shorter u, v-walk W contained in W.
- By induction hypothesis, W contains a u, v-path P and this path is contained in W

Definition-X

- Connected graph
- A graph G is connected if it has a u, v-path whenever $u, v \in V(G)$. Otherwise, the graph is a disconnected one

Definition-X

- Connected graph
- A graph G is connected if it has a u, v-path whenever $u, v \in V(G)$. Otherwise, the graph is a disconnected one
- Component
- The components of a graph G are its maximal connected subgraphs.
- A component is trivial if it has no edges, otherwise it is nontrivial.
- An isolated vertex is a vertex of degree 0

Example-IV

- Prove: Every graph with n vertices and k edges has at least $n-k$ components

Example-IV

- Prove: Every graph with n vertices and k edges has at least $n-k$ components
- Proof:

Example-IV

- Prove: Every graph with n vertices and k edges has at least $n-k$ components
- Proof:
- An n-vertex graph with no edges has n components.

Example-IV

- Prove: Every graph with n vertices and k edges has at least $n-k$ components
- Proof:
- An n-vertex graph with no edges has n components.
- Adding an edge decreases the number of components by 0 or 1 .

Example-IV

- Prove: Every graph with n vertices and k edges has at least $n-k$ components
- Proof:
- An n-vertex graph with no edges has n components.
- Adding an edge decreases the number of components by 0 or 1 .
- Adding k edges can reduce the number of components by maximum of k. Hence the number of components is at least $n-k$

Definition-XI

- Cut-edge / Cut-vertex
- A cut-edge or cut-vertex of graph is an edge or vertex whose deletion increases the number of components

Definition-XI

- Cut-edge / Cut-vertex
- A cut-edge or cut-vertex of graph is an edge or vertex whose deletion increases the number of components
- We use $G-e$ or $G-M$ for the subgraph obtained by deleting an edge e or set of edges M

Definition-XI

- Cut-edge / Cut-vertex
- A cut-edge or cut-vertex of graph is an edge or vertex whose deletion increases the number of components
- We use $G-e$ or $G-M$ for the subgraph obtained by deleting an edge e or set of edges M
- We use $G-v$ or $G-S$ for the subgraph obtained by deleting a vertex v or set of nodes S

Example-V

- Prove: An edge is a cut-edge if and only if it belongs to no cycle

Example-V

- Prove: An edge is a cut-edge if and only if it belongs to no cycle
- Proof:

Example-V

- Prove: An edge is a cut-edge if and only if it belongs to no cycle
- Proof:
- Let e be an edge in a graph G with endpoints x and y, and let H be the component containing e

Example-V

- Prove: An edge is a cut-edge if and only if it belongs to no cycle
- Proof:
- Let e be an edge in a graph G with endpoints x and y, and let H be the component containing e
- Since deletion of e affects no other component, it suffices to prove that $H-e$ is connected if and only if e belongs to a cycle

Example-V

- Prove: An edge is a cut-edge if and only if it belongs to no cycle
- Proof:
- Let e be an edge in a graph G with endpoints x and y, and let H be the component containing e
- Since deletion of e affects no other component, it suffices to prove that $H-e$ is connected if and only if e belongs to a cycle
- Case I: Assume $H-e$ is connected. It implies $H-e$ contains a path $\left(P^{\prime}\right)$ between x and y. Hence P^{\prime} and e will form a cycle

Example-V

- Prove: An edge is a cut-edge if and only if it belongs to no cycle
- Proof:
- Let e be an edge in a graph G with endpoints x and y, and let H be the component containing e
- Since deletion of e affects no other component, it suffices to prove that $H-e$ is connected if and only if e belongs to a cycle
- Case I: Assume $H-e$ is connected. It implies $H-e$ contains a path $\left(P^{\prime}\right)$ between x and y. Hence P^{\prime} and e will form a cycle
- Case II: Suppose e lies in a cycle. Choose $u, v \in V(H)$. Since H is connected, H has a u, v-path P.

Example-V

- Prove: An edge is a cut-edge if and only if it belongs to no cycle
- Proof:
- Let e be an edge in a graph G with endpoints x and y, and let H be the component containing e
- Since deletion of e affects no other component, it suffices to prove that $H-e$ is connected if and only if e belongs to a cycle
- Case I: Assume $H-e$ is connected. It implies $H-e$ contains a path $\left(P^{\prime}\right)$ between x and y. Hence P^{\prime} and e will form a cycle
- Case II: Suppose e lies in a cycle. Choose $u, v \in V(H)$. Since H is connected, H has a u, v-path P.
- If P does not contain e, then P exists in $H-e$

Example-V

- Prove: An edge is a cut-edge if and only if it belongs to no cycle
- Proof:
- Let e be an edge in a graph G with endpoints x and y, and let H be the component containing e
- Since deletion of e affects no other component, it suffices to prove that $H-e$ is connected if and only if e belongs to a cycle
- Case I: Assume $H-e$ is connected. It implies $H-e$ contains a path $\left(P^{\prime}\right)$ between x and y. Hence P^{\prime} and e will form a cycle
- Case II: Suppose e lies in a cycle. Choose $u, v \in V(H)$. Since H is connected, H has a u, v-path P.
- If P does not contain e, then P exists in $H-e$
- If P contains e, suppose by symmetry that x is between u and y on P. Since $H-e$ contains a u, x-path along P, an x, y-path along \mathbf{C}, and a y, v-path along P, the transitivity of connection relation implies that $H-e$ has a u, v-path

Example-V

- Prove: An edge is a cut-edge if and only if it belongs to no cycle
- Proof:
- Let e be an edge in a graph G with endpoints x and y, and let H be the component containing e
- Since deletion of e affects no other component, it suffices to prove that $H-e$ is connected if and only if e belongs to a cycle
- Case I: Assume $H-e$ is connected. It implies $H-e$ contains a path $\left(P^{\prime}\right)$ between x and y. Hence P^{\prime} and e will form a cycle
- Case II: Suppose e lies in a cycle. Choose $u, v \in V(H)$. Since H is connected, H has a u, v-path P.
- If P does not contain e, then P exists in $H-e$
- If P contains e, suppose by symmetry that x is between u and y on P. Since $H-e$ contains a u, x-path along P, an x, y-path along \mathbf{C}, and a y, v-path along P, the transitivity of connection relation implies that $H-e$ has a u, v-path
- Hence, $H-e$ is connected

Example-VI

- Prove: Every closed odd walk contains an odd cycle

Example-VI

- Prove: Every closed odd walk contains an odd cycle
- Proof by induction. We use induction on the length / of a closed walk W

Example-VI

- Prove: Every closed odd walk contains an odd cycle
- Proof by induction. We use induction on the length / of a closed walk W
- Basis step. $I=1$. A closed walk of length 1 traverses a cycle of length 1

Example-VI

- Prove: Every closed odd walk contains an odd cycle
- Proof by induction. We use induction on the length / of a closed walk W
- Basis step. $I=1$. A closed walk of length 1 traverses a cycle of length 1
- Induction step: $I>1$. Assume the claim for closed odd walks shorter than W.

Example-VI

- Prove: Every closed odd walk contains an odd cycle
- Proof by induction. We use induction on the length / of a closed walk W
- Basis step. $I=1$. A closed walk of length 1 traverses a cycle of length 1
- Induction step: $I>1$. Assume the claim for closed odd walks shorter than W.
- If W has no repeated vertex (other than the first and last), then W itself forms a cycle of odd length

Example-VI

- Prove: Every closed odd walk contains an odd cycle
- Proof by induction. We use induction on the length / of a closed walk W
- Basis step. $I=1$. A closed walk of length 1 traverses a cycle of length 1
- Induction step: $I>1$. Assume the claim for closed odd walks shorter than W.
- If W has no repeated vertex (other than the first and last), then W itself forms a cycle of odd length
- If vertex v is repeated in W, then we view W as starting at v and break W into two u, v walks. Since W has odd length, one of these is odd and the other is even.

Example-VI

- Prove: Every closed odd walk contains an odd cycle
- Proof by induction. We use induction on the length / of a closed walk W
- Basis step. $I=1$. A closed walk of length 1 traverses a cycle of length 1
- Induction step: $I>1$. Assume the claim for closed odd walks shorter than W.
- If W has no repeated vertex (other than the first and last), then W itself forms a cycle of odd length
- If vertex v is repeated in W, then we view W as starting at v and break W into two u, v walks. Since W has odd length, one of these is odd and the other is even.
- The odd walk is shorter than W.

Example-VI

- Prove: Every closed odd walk contains an odd cycle
- Proof by induction. We use induction on the length / of a closed walk W
- Basis step. $I=1$. A closed walk of length 1 traverses a cycle of length 1
- Induction step: $I>1$. Assume the claim for closed odd walks shorter than W.
- If W has no repeated vertex (other than the first and last), then W itself forms a cycle of odd length
- If vertex v is repeated in W, then we view W as starting at v and break W into two u, v walks. Since W has odd length, one of these is odd and the other is even.
- The odd walk is shorter than W.
- By induction hypothesis it contains an odd cycle.

Example-VI

- Prove: A graph is bipartite if and only if it has no odd cycle

Thante youl

