Discrete Mathematics

Graphs-I

Arijit Mondal Dept of CSE arijit@iitp.ac.in

- Mathematically, a graph is a relation
- Abstract representation of many problems

- Mathematically, a graph is a relation
- Abstract representation of many problems
- Example
 - How can we lay cable at minimum cost to make every telephone reachable from every other?

- Mathematically, a graph is a relation
- Abstract representation of many problems
- Example
 - How can we lay cable at minimum cost to make every telephone reachable from every other?
 - What is the fastest route from the national capital to each state capital?

- Mathematically, a graph is a relation
- Abstract representation of many problems
- Example
 - How can we lay cable at minimum cost to make every telephone reachable from every other?
 - What is the fastest route from the national capital to each state capital?
 - How can *n* jobs be filled by *n* people with maximum total utility?

- Mathematically, a graph is a relation
- Abstract representation of many problems
- Example
 - How can we lay cable at minimum cost to make every telephone reachable from every other?
 - What is the fastest route from the national capital to each state capital?
 - How can *n* jobs be filled by *n* people with maximum total utility?
 - How can you prepare semester examination schedule for IIT Patna?

- Mathematically, a graph is a relation
- Abstract representation of many problems
- Example
 - How can we lay cable at minimum cost to make every telephone reachable from every other?
 - What is the fastest route from the national capital to each state capital?
 - How can *n* jobs be filled by *n* people with maximum total utility?
 - How can you prepare semester examination schedule for IIT Patna?
 - JEE seat allocation!!

Graphs

- A graph G = (V, E) with *m* vertices and *n* edges consists of
 - A vertex set $V(G) = \{v_1, v_2, ..., v_m\}$
 - An edge set $E(G) = \{e_1, e_2, \dots, e_n\}$ where $e_i = (v_k, v_{k'})$
 - Here, v_k and $v_{k'}$ are the two end points of the edge
 - If there is a edge between v_i and v_j , then they are adjacent and are neighbor.

Graphs

- A graph G = (V, E) with *m* vertices and *n* edges consists of
 - A vertex set $V(G) = \{v_1, v_2, ..., v_m\}$
 - An edge set $E(G) = \{e_1, e_2, \dots, e_n\}$ where $e_i = (v_k, v_{k'})$
 - Here, v_k and $v_{k'}$ are the two end points of the edge
 - If there is a edge between v_i and v_j , then they are adjacent and are neighbor.
- We will consider only simple graph
 - No loop
 - A loop is an edge whose endpoints are equal

Graphs

- A graph G = (V, E) with *m* vertices and *n* edges consists of
 - A vertex set $V(G) = \{v_1, v_2, ..., v_m\}$
 - An edge set $E(G) = \{e_1, e_2, \dots, e_n\}$ where $e_i = (v_k, v_{k'})$
 - Here, v_k and $v_{k'}$ are the two end points of the edge
 - If there is a edge between v_i and v_j , then they are adjacent and are neighbor.
- We will consider only simple graph
 - No loop
 - A loop is an edge whose endpoints are equal
 - No multiple edges
 - Multiple edges are the edges with same pair of end points.

- Complement graph
 - The complement graph \overline{G} of a simple graph G is simple graph with vertex set V(G) and $(u, v) \in E(\overline{G})$ if and only if $(u, v) \notin E(G)$, where $u, v \in V(G)$

- Complement graph
 - The complement graph \overline{G} of a simple graph G is simple graph with vertex set V(G) and $(u, v) \in E(\overline{G})$ if and only if $(u, v) \notin E(G)$, where $u, v \in V(G)$
- Clique
 - A clique in a graph is a set of pairwise adjacent vertices

- Complement graph
 - The complement graph \overline{G} of a simple graph G is simple graph with vertex set V(G) and $(u, v) \in E(\overline{G})$ if and only if $(u, v) \notin E(G)$, where $u, v \in V(G)$
- Clique
 - A clique in a graph is a set of pairwise adjacent vertices
- Independent set
 - An independent set in a graph is a set of pairwise non-adjacent vertices

- Bipartite graph
 - A graph is bipartite if V(G) is the union of two disjoint (possibly empty) independent sets called partite sets of G

- Bipartite graph
 - A graph is bipartite if V(G) is the union of two disjoint (possibly empty) independent sets called partite sets of G
- Chromatic number
 - The chromatic number of a graph G, denoted as $\chi(G)$ is the minimum number of colors needed to label the vertices so that adjacent vertices receive different colors
 - A graph is k-partite if V(G) can be expressed as the union of k independent sets.

Definition-III

- Path
 - A path is a simple graph whose vertices can be ordered so that two vertices are adjacent if and only if they are consecutive in the list

Definition-III

- Path
 - A path is a simple graph whose vertices can be ordered so that two vertices are adjacent if and only if they are consecutive in the list
- Cycle
 - A cycle is a graph with an equal number of vertices and edges whose vertices can be placed around a circle so that two vertices are adjacent if and only if they appear consecutively along the circle

- Subgraph
 - A subgraph of a graph G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ and the assignment of endpoints to edges in H is the same as in G. This is denoted as $H \subseteq G$ and we say 'G contains H'.

- Subgraph
 - A subgraph of a graph G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ and the assignment of endpoints to edges in H is the same as in G. This is denoted as $H \subseteq G$ and we say 'G contains H'.
- Connected graph
 - A graph G is connected if each pair of vertices in G belongs to a path, otherwise, G is disconnected.

• Isomorphism

• An isomorphism from a simple graph G to a simple graph H is a bijection $f: V(G) \rightarrow V(H)$ such that $(u, v) \in E(G)$ if and only if $(f(u), f(v)) \in E(H)$. We say G is isomorphic to Hand denoted as $G \cong H$, if there is an isomorphism from G to H

• Isomorphism

- An isomorphism from a simple graph G to a simple graph H is a bijection $f: V(G) \rightarrow V(H)$ such that $(u, v) \in E(G)$ if and only if $(f(u), f(v)) \in E(H)$. We say G is isomorphic to Hand denoted as $G \cong H$, if there is an isomorphism from G to H
- Isomorphic relation is an equivalence relation on the set of simple graph
 - It satisfies reflexive, symmetric, and transitive properties.

• Which of the following graphs are isomorphic

• Complete graph

• A complete graph is a simple graph whose vertices are pairwise adjacent

• Complete graph

- A complete graph is a simple graph whose vertices are pairwise adjacent
- Notations
 - P_n path with *n* vertices

• Complete graph

- A complete graph is a simple graph whose vertices are pairwise adjacent
- Notations
 - P_n path with *n* vertices
 - C_n cycle with *n* vertices

- Complete graph
 - A complete graph is a simple graph whose vertices are pairwise adjacent
- Notations
 - P_n path with *n* vertices
 - C_n cycle with *n* vertices
 - K_n complete graph with *n* vertices

- Complete graph
 - A complete graph is a simple graph whose vertices are pairwise adjacent
- Notations
 - P_n path with *n* vertices
 - *C_n* cycle with *n* vertices
 - K_n complete graph with *n* vertices
 - $K_{n,m}$ complete bipartite graph with with sets having *n* and *m* vertices

• Decomposition

• A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list

- Decomposition
 - A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list
- A graph is self-complementary if it is isomorphic to its complement

• Automorphism

• An automorphism of *G* is an isomorphism from *G* to *G*

• Automorphism

- An automorphism of G is an isomorphism from G to G
- Vertex-transitive
 - A graph *G* is vertex-transitive if for every pair $u, v \in V(G)$ there is an automorphism that maps u to v

- Automorphism
 - An automorphism of G is an isomorphism from G to G
- Vertex-transitive
 - A graph *G* is vertex-transitive if for every pair $u, v \in V(G)$ there is an automorphism that maps u to v
- Let G be the path with vertex set $\{1, 2, 3, 4\}$ and edge set $\{12, 23, 34\}$. How many automorphism are there for this graph?

- Automorphism
 - An automorphism of G is an isomorphism from G to G
- Vertex-transitive
 - A graph *G* is vertex-transitive if for every pair $u, v \in V(G)$ there is an automorphism that maps u to v
- Let G be the path with vertex set $\{1, 2, 3, 4\}$ and edge set $\{12, 23, 34\}$. How many automorphism are there for this graph?
- Count the number of automorphism for the graph $K_{r,s}$.

- Walk
 - A walk is a list of $v_0, e_1, v_1, \ldots, e_k, v_k$ of vertices and edges such that for $1 \le i \le k$, the edge e_i has endpoints v_{i-1} and v_i .

• Walk

• A walk is a list of $v_0, e_1, v_1, \ldots, e_k, v_k$ of vertices and edges such that for $1 \le i \le k$, the edge e_i has endpoints v_{i-1} and v_i .

• Trail

• A trail is a walk with no repeated edge.

• Walk

• A walk is a list of $v_0, e_1, v_1, \ldots, e_k, v_k$ of vertices and edges such that for $1 \le i \le k$, the edge e_i has endpoints v_{i-1} and v_i .

• Trail

- A trail is a walk with no repeated edge.
- A *u*, *v*-walk or *u*, *v*-trail has first vertex *u* and the last vertex *v*

• Walk

- A walk is a list of $v_0, e_1, v_1, \ldots, e_k, v_k$ of vertices and edges such that for $1 \le i \le k$, the edge e_i has endpoints v_{i-1} and v_i .
- Trail
 - A trail is a walk with no repeated edge.
- A *u*, *v*-walk or *u*, *v*-trail has first vertex *u* and the last vertex *v*
- The length of a walk, trail, path or cycle is its number of edges.

• Walk

• A walk is a list of $v_0, e_1, v_1, \ldots, e_k, v_k$ of vertices and edges such that for $1 \le i \le k$, the edge e_i has endpoints v_{i-1} and v_i .

• Trail

- A trail is a walk with no repeated edge.
- A *u*, *v*-walk or *u*, *v*-trail has first vertex *u* and the last vertex *v*
- The length of a walk, trail, path or cycle is its number of edges.
- A walk or trail is closed if its endpoints are the same.

• Prove that every *u*, *v*-walk contains a *u*, *v*-path.

- Prove that every *u*, *v*-walk contains a *u*, *v*-path.
- Proof by induction: which variable to choose?

- Prove that every *u*, *v*-walk contains a *u*, *v*-path.
- Proof by induction: which variable to choose?
 - We use induction on the length of a u, v-walk W

- Prove that every *u*, *v*-walk contains a *u*, *v*-path.
- Proof by induction: which variable to choose?
 - We use induction on the length of a u, v-walk W
 - Basis step: l = 0 Having no edge, W consists of a single vertex (u = v). This vertex is a u, v-path of length 0

- Prove that every *u*, *v*-walk contains a *u*, *v*-path.
- Proof by induction: which variable to choose?
 - We use induction on the length of a u, v-walk W
 - Basis step: l = 0 Having no edge, W consists of a single vertex (u = v). This vertex is a u, v-path of length 0
 - Induction step: $l \ge 1$. We assume that the claim holds for walks of length less than l.

- Prove that every *u*, *v*-walk contains a *u*, *v*-path.
- Proof by induction: which variable to choose?
 - We use induction on the length of a u, v-walk W
 - Basis step: l = 0 Having no edge, W consists of a single vertex (u = v). This vertex is a u, v-path of length 0
 - Induction step: $l \ge 1$. We assume that the claim holds for walks of length less than l.
 - If W has no repeated vertex then its vertices and edges form a u, v-path

- Prove that every *u*, *v*-walk contains a *u*, *v*-path.
- Proof by induction: which variable to choose?
 - We use induction on the length of a u, v-walk W
 - Basis step: l = 0 Having no edge, W consists of a single vertex (u = v). This vertex is a u, v-path of length 0
 - Induction step: $l \ge 1$. We assume that the claim holds for walks of length less than l.
 - If W has no repeated vertex then its vertices and edges form a u, v-path
 - If *W* has repeated node *w*, then deleting the edges and vertices between appearances of *w* (leaving one copy of *w*) yields a shorter *u*, *v*-walk *W* contained in *W*.

- Prove that every *u*, *v*-walk contains a *u*, *v*-path.
- Proof by induction: which variable to choose?
 - We use induction on the length of a u, v-walk W
 - Basis step: l = 0 Having no edge, W consists of a single vertex (u = v). This vertex is a u, v-path of length 0
 - Induction step: $l \ge 1$. We assume that the claim holds for walks of length less than l.
 - If W has no repeated vertex then its vertices and edges form a u, v-path
 - If *W* has repeated node *w*, then deleting the edges and vertices between appearances of *w* (leaving one copy of *w*) yields a shorter *u*, *v*-walk *W* contained in *W*.
 - By induction hypothesis, W contains a u, v-path P and this path is contained in W

• Connected graph

● A graph *G* is connected if it has a *u*, *v*-path whenever *u*, *v* ∈ *V*(*G*). Otherwise, the graph is a disconnected one

- Connected graph
 - A graph *G* is connected if it has a *u*, *v*-path whenever *u*, *v* ∈ *V*(*G*). Otherwise, the graph is a disconnected one
- Component
 - The components of a graph G are its maximal connected subgraphs.
 - A component is trivial if it has no edges, otherwise it is nontrivial.
 - An isolated vertex is a vertex of degree $\boldsymbol{0}$

• Prove: Every graph with *n* vertices and *k* edges has at least n - k components

- Prove: Every graph with n vertices and k edges has at least n k components
- Proof:

- Prove: Every graph with n vertices and k edges has at least n k components
- Proof:
 - An *n*-vertex graph with no edges has *n* components.

- Prove: Every graph with n vertices and k edges has at least n k components
- Proof:
 - An *n*-vertex graph with no edges has *n* components.
 - Adding an edge decreases the number of components by $0 \mbox{ or } 1.$

- Prove: Every graph with n vertices and k edges has at least n k components
- Proof:
 - An *n*-vertex graph with no edges has *n* components.
 - Adding an edge decreases the number of components by $0 \mbox{ or } 1.$
 - Adding k edges can reduce the number of components by maximum of k. Hence the number of components is at least n k

- Cut-edge / Cut-vertex
 - A cut-edge or cut-vertex of graph is an edge or vertex whose deletion increases the number of components

- Cut-edge / Cut-vertex
 - A cut-edge or cut-vertex of graph is an edge or vertex whose deletion increases the number of components
 - We use G e or G M for the subgraph obtained by deleting an edge e or set of edges M

- Cut-edge / Cut-vertex
 - A cut-edge or cut-vertex of graph is an edge or vertex whose deletion increases the number of components
 - We use G e or G M for the subgraph obtained by deleting an edge e or set of edges M
 - We use G v or G S for the subgraph obtained by deleting a vertex v or set of nodes S

• Prove: An edge is a cut-edge if and only if it belongs to no cycle

- Prove: An edge is a cut-edge if and only if it belongs to no cycle
- Proof:

- Prove: An edge is a cut-edge if and only if it belongs to no cycle
- Proof:
 - Let e be an edge in a graph G with endpoints x and y, and let H be the component containing e

- Prove: An edge is a cut-edge if and only if it belongs to no cycle
- Proof:
 - Let e be an edge in a graph G with endpoints x and y, and let H be the component containing e
 - Since deletion of e affects no other component, it suffices to prove that H e is connected if and only if e belongs to a cycle

- Prove: An edge is a cut-edge if and only if it belongs to no cycle
- Proof:
 - Let e be an edge in a graph G with endpoints x and y, and let H be the component containing e
 - Since deletion of e affects no other component, it suffices to prove that H e is connected if and only if e belongs to a cycle
 - Case I: Assume H e is connected. It implies H e contains a path (P') between x and y. Hence P' and e will form a cycle

- Prove: An edge is a cut-edge if and only if it belongs to no cycle
- Proof:
 - Let e be an edge in a graph G with endpoints x and y, and let H be the component containing e
 - Since deletion of e affects no other component, it suffices to prove that H e is connected if and only if e belongs to a cycle
 - Case I: Assume H e is connected. It implies H e contains a path (P') between x and y. Hence P' and e will form a cycle
 - Case II: Suppose *e* lies in a cycle. Choose $u, v \in V(H)$. Since *H* is connected, *H* has a *u*, *v*-path *P*.

- Prove: An edge is a cut-edge if and only if it belongs to no cycle
- Proof:
 - Let e be an edge in a graph G with endpoints x and y, and let H be the component containing e
 - Since deletion of e affects no other component, it suffices to prove that H e is connected if and only if e belongs to a cycle
 - Case I: Assume H e is connected. It implies H e contains a path (P') between x and y. Hence P' and e will form a cycle
 - Case II: Suppose *e* lies in a cycle. Choose $u, v \in V(H)$. Since *H* is connected, *H* has a u, v-path *P*.
 - If P does not contain e, then P exists in H e

- Prove: An edge is a cut-edge if and only if it belongs to no cycle
- Proof:
 - Let e be an edge in a graph G with endpoints x and y, and let H be the component containing e
 - Since deletion of e affects no other component, it suffices to prove that H e is connected if and only if e belongs to a cycle
 - Case I: Assume H e is connected. It implies H e contains a path (P') between x and y. Hence P' and e will form a cycle
 - Case II: Suppose *e* lies in a cycle. Choose $u, v \in V(H)$. Since *H* is connected, *H* has a u, v-path *P*.
 - If P does not contain e, then P exists in H e
 - If *P* contains *e*, suppose by symmetry that *x* is between *u* and *y* on *P*. Since H e contains a *u*, *x*-path along *P*, an *x*, *y*-path along **C**, and a *y*, *v*-path along *P*, the transitivity of connection relation implies that H e has a *u*, *v*-path

- Prove: An edge is a cut-edge if and only if it belongs to no cycle
- Proof:
 - Let e be an edge in a graph G with endpoints x and y, and let H be the component containing e
 - Since deletion of e affects no other component, it suffices to prove that H e is connected if and only if e belongs to a cycle
 - Case I: Assume H e is connected. It implies H e contains a path (P') between x and y. Hence P' and e will form a cycle
 - Case II: Suppose *e* lies in a cycle. Choose $u, v \in V(H)$. Since *H* is connected, *H* has a u, v-path *P*.
 - If P does not contain e, then P exists in H e
 - If *P* contains *e*, suppose by symmetry that *x* is between *u* and *y* on *P*. Since H e contains a *u*, *x*-path along *P*, an *x*, *y*-path along **C**, and a *y*, *v*-path along *P*, the transitivity of connection relation implies that H e has a *u*, *v*-path C
 - Hence, H e is connected

• Prove: Every closed odd walk contains an odd cycle

- Prove: Every closed odd walk contains an odd cycle
- Proof by induction. We use induction on the length / of a closed walk ${\it W}$

- Prove: Every closed odd walk contains an odd cycle
- Proof by induction. We use induction on the length / of a closed walk W
 - Basis step. l = 1. A closed walk of length 1 traverses a cycle of length 1

- Prove: Every closed odd walk contains an odd cycle
- Proof by induction. We use induction on the length / of a closed walk ${\it W}$
 - Basis step. l = 1. A closed walk of length 1 traverses a cycle of length 1
 - Induction step: l > 1. Assume the claim for closed odd walks shorter than W.

- Prove: Every closed odd walk contains an odd cycle
- Proof by induction. We use induction on the length / of a closed walk ${\cal W}$
 - Basis step. l = 1. A closed walk of length 1 traverses a cycle of length 1
 - Induction step: l > 1. Assume the claim for closed odd walks shorter than W.
 - If W has no repeated vertex (other than the first and last), then W itself forms a cycle of odd length

- Prove: Every closed odd walk contains an odd cycle
- Proof by induction. We use induction on the length / of a closed walk ${\cal W}$
 - Basis step. l = 1. A closed walk of length 1 traverses a cycle of length 1
 - Induction step: l > 1. Assume the claim for closed odd walks shorter than W.
 - If W has no repeated vertex (other than the first and last), then W itself forms a cycle of odd length
 - If vertex v is repeated in W, then we view W as starting at v and break W into two u, v-walks. Since W has odd length, one of these is odd and the other is even.

- Prove: Every closed odd walk contains an odd cycle
- Proof by induction. We use induction on the length / of a closed walk ${\cal W}$
 - Basis step. l = 1. A closed walk of length 1 traverses a cycle of length 1
 - Induction step: l > 1. Assume the claim for closed odd walks shorter than W.
 - If W has no repeated vertex (other than the first and last), then W itself forms a cycle of odd length
 - If vertex v is repeated in W, then we view W as starting at v and break W into two u, v-walks. Since W has odd length, one of these is odd and the other is even.
 - The odd walk is shorter than W.

- Prove: Every closed odd walk contains an odd cycle
- Proof by induction. We use induction on the length / of a closed walk ${\cal W}$
 - Basis step. l = 1. A closed walk of length 1 traverses a cycle of length 1
 - Induction step: l > 1. Assume the claim for closed odd walks shorter than W.
 - If W has no repeated vertex (other than the first and last), then W itself forms a cycle of odd length
 - If vertex v is repeated in W, then we view W as starting at v and break W into two u, v-walks. Since W has odd length, one of these is odd and the other is even.
 - The odd walk is shorter than W.
 - By induction hypothesis it contains an odd cycle.

• Prove: A graph is bipartite if and only if it has no odd cycle

Thank you!