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Use of graphs

e Mathematically, a graph is a relation
e Abstract representation of many problems
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Use of graphs

e Mathematically, a graph is a relation
e Abstract representation of many problems

e Example
e How can we lay cable at minimum cost to make every telephone reachable from every
other?
e What is the fastest route from the national capital to each state capital?
e How can n jobs be filled by n people with maximum total utility?
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Use of graphs

e Mathematically, a graph is a relation
e Abstract representation of many problems

e Example
e How can we lay cable at minimum cost to make every telephone reachable from every
other?
e What is the fastest route from the national capital to each state capital?
e How can n jobs be filled by n people with maximum total utility?
e How can you prepare semester examination schedule for IIT Patna?
e JEE seat allocation!!
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Graphs

e Agraph G = (V| E) with m vertices and n edges consists of
o Avertexset V(G) = {vy,vo, ..., vy}
e Anedgeset £(G) = {e|, e, ..., e,} where e; = (v, vi)
e Here, v, and v, are the two end points of the edge
e If there is a edge between v; and v;, then they are adjacent and are neighbor.
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e Agraph G = (V| E) with m vertices and n edges consists of
o Avertexset V(G) = {vy,vo, ..., vy}
e Anedgeset £(G) = {e|, e, ..., e,} where e; = (v, vi)
e Here, v, and v, are the two end points of the edge
e If there is a edge between v; and v;, then they are adjacent and are neighbor.
e We will consider only simple graph
e No loop
e Aloop is an edge whose endpoints are equal
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Graphs

e Agraph G = (V| E) with m vertices and n edges consists of
o Avertexset V(G) = {vy,vo, ..., vy}
e Anedgeset £(G) = {e|, e, ..., e,} where e; = (v, vi)
e Here, v, and v, are the two end points of the edge
e If there is a edge between v; and v;, then they are adjacent and are neighbor.
e We will consider only simple graph
e No loop
e Aloop is an edge whose endpoints are equal
e No multiple edges
o Multiple edges are the edges with same pair of end points.
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Definition-I

e Complement graph
e The complement graph G of a simple graph G is simple graph with vertex set V( G) and

(u,v) € E(G)ifand only if (u, v) & E(G), where u, v € V(G)
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e Complement graph
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Definition-I

e Complement graph
e The complement graph G of a simple graph G is simple graph with vertex set V( G) and

(u,v) € E(G)ifand only if (u, v) & E(G), where u, v € V(G)
e Clique
e Aclique in a graph is a set of pairwise adjacent vertices
e Independent set
e Anindependent set in a graph is a set of pairwise non-adjacent vertices
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Definition-l|

e Bipartite graph
e A graph is bipartite if V( G) is the union of two disjoint (possibly empty) independent sets
called partite sets of G
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Definition-l|

e Bipartite graph
e A graph is bipartite if V( G) is the union of two disjoint (possibly empty) independent sets
called partite sets of G

e Chromatic number

e The chromatic number of a graph G, denoted as x(G) is the minimum number of colors
needed to label the vertices so that adjacent vertices receive different colors

e Agraph is k-partite if \/( G) can be expressed as the union of k independent sets.
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Definition-llI

e Path

e A path is a simple graph whose vertices can be ordered so that two vertices are adjacent if
and only if they are consecutive in the list
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Definition-llI

e Path
e A path is a simple graph whose vertices can be ordered so that two vertices are adjacent if
and only if they are consecutive in the list
e Cycle

e Acycleis a graph with an equal number of vertices and edges whose vertices can be placed
around a circle so that two vertices are adjacent if and only if they appear consecutively
along the circle
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Definition-IV

e Subgraph
e A subgraph of a graph Gis a graph H such that V(H) C V(G) and E(H) C E(G) and the
assignment of endpoints to edges in H is the same as in G. This is denoted as H C G and
we say ‘G contains H'.
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Definition-IV

e Subgraph
e A subgraph of a graph Gis a graph H such that V(H) C V(G) and E(H) C E(G) and the
assignment of endpoints to edges in H is the same as in G. This is denoted as H C G and
we say ‘G contains H'.

e Connected graph

e A graph G is connected if each pair of vertices in G belongs to a path, otherwise, G is dis-
connected.
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Definition-V

e Isomorphism
e Anisomorphism from a simple graph G to a simple graph His a bijection 7: V(G) — V(H)
such that (u, v) € E(G) if and only if (f{u), (v)) € E(H). We say G is isomorphic to H
and denoted as G = H, if there is an isomorphism from Gto H
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Definition-V
e Isomorphism

e Anisomorphism from a simple graph G to a simple graph His a bijection 7: V(G) — V(H)
such that (u, v) € E(G) if and only if (f{u), (v)) € E(H). We say G is isomorphic to H
and denoted as G = H, if there is an isomorphism from Gto H

e Isomorphic relation is an equivalence relation on the set of simple graph
o |t satisfies reflexive, symmetric, and transitive properties.
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Example-I

e Which of the following graphs are isomorphic

a b o« 6 1 m n u v
] 0 ] ]
d e f 4 3 q r y z
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Example-li

e How many different graphs are possible with n vertices? What are the isomorphic classes
when n = 4?
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e How many different graphs are possible with n vertices? What are the isomorphic classes
when n = 4?
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Example-li

e How many different graphs are possible with n vertices? What are the isomorphic classes
when n = 4?

oo A N NN
N LN
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Example-li

e How many different graphs are possible with n vertices? What are the isomorphic classes
when n = 4?

oo A N NN
AN D A A AN
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Definition-VI

e Complete graph
e A complete graph is a simple graph whose vertices are pairwise adjacent

IIT Patna



Definition-VI

e Complete graph
e A complete graph is a simple graph whose vertices are pairwise adjacent

e Notations
e P, - path with n vertices

IIT Patna



Definition-VI
e Complete graph
e A complete graph is a simple graph whose vertices are pairwise adjacent

e Notations

e P, - path with n vertices
e (, - cycle with n vertices

IIT Patna



Definition-VI

e Complete graph
e A complete graph is a simple graph whose vertices are pairwise adjacent

e Notations

e P, - path with n vertices
e (, - cycle with n vertices
e K, - complete graph with n vertices

IIT Patna



Definition-VI

e Complete graph
e A complete graph is a simple graph whose vertices are pairwise adjacent

e Notations
e P, - path with n vertices
e (, - cycle with n vertices
e K, - complete graph with n vertices
e K, m - complete bipartite graph with with sets having n and m vertices
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Definition-VlII

e Decomposition

e A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one
subgraph in the list
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Definition-VlII

e Decomposition

e A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one
subgraph in the list

e A graph is self-complementary if it is isomorphic to its complement

-
‘. s
.z .
7. .

s
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Definition-VIII

e Automorphism
e An automorphism of G is an isomorphism from Gto G
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Definition-VIII
e Automorphism

e An automorphism of G is an isomorphism from Gto G

e Vertex-transitive

e A graph G is vertex-transitive if for every pair u, v € V(G) there is an automorphism that
maps uto v
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Definition-VIII
e Automorphism

e An automorphism of G is an isomorphism from Gto G

e Vertex-transitive

e A graph G is vertex-transitive if for every pair u, v € V(G) there is an automorphism that
maps uto v

e Let Gbe the path with vertex set {1, 2, 3,4} and edge set {12, 23, 34}. How many automor-
phism are there for this graph?
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Definition-VIII

Automorphism
e An automorphism of G is an isomorphism from Gto G

Vertex-transitive

e A graph G is vertex-transitive if for every pair u, v € V(G) there is an automorphism that
maps uto v

Let G be the path with vertex set {1, 2, 3, 4} and edge set {12, 23, 34}. How many automor-
phism are there for this graph?

Count the number of automorphism for the graph K, ;.
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Definition-IX

e Walk

e Awalkisalist of vy, e, vq, ..., e v of vertices and edges such that for 1 < j < k, the
edge e; has endpoints v;_; and v;,.
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e Walk

e Awalkisalist of vy, e, vq, ..., e v of vertices and edges such that for 1 < j < k, the
edge e; has endpoints v;_; and v;,.

e Trail
e A trail is a walk with no repeated edge.
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e A trail is a walk with no repeated edge.
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Definition-IX

Walk

e Awalkisalist of vy, e, vq, ..., e v of vertices and edges such that for 1 < j < k, the
edge e; has endpoints v;_; and v;,.

Trail
e A trail is a walk with no repeated edge.

A u, v-walk or u, v-trail has first vertex u and the last vertex v
The length of a walk, trail, path or cycle is its number of edges.
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Definition-IX

Walk

e Awalkisalist of vy, e, vq, ..., e v of vertices and edges such that for 1 < j < k, the
edge e; has endpoints v;_; and v;,.

Trail
e A trail is a walk with no repeated edge.

A u, v-walk or u, v-trail has first vertex u and the last vertex v
The length of a walk, trail, path or cycle is its number of edges.
A walk or trail is closed if its endpoints are the same.
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Example-lll

e Prove that every u, v-walk contains a u, v-path.
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Example-lll

e Prove that every u, v-walk contains a u, v-path.

e Proof by induction: which variable to choose?

e We use induction on the length of a u, v-walk W/
e Basis step: / = 0 - Having no edge, WV consists of a single vertex (u = v). This vertex is a
u, v-path of length 0
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e Prove that every u, v-walk contains a u, v-path.

e Proof by induction: which variable to choose?

e We use induction on the length of a u, v-walk W/
e Basis step: / = 0 - Having no edge, WV consists of a single vertex (u = v). This vertex is a
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e Induction step: / > 1. We assume that the claim holds for walks of length less than /.
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Example-lll

e Prove that every u, v-walk contains a u, v-path.

e Proof by induction: which variable to choose?

e We use induction on the length of a u, v-walk W/
e Basis step: / = 0 - Having no edge, WV consists of a single vertex (u = v). This vertex is a
u, v-path of length 0

e Induction step: / > 1. We assume that the claim holds for walks of length less than /.
e If W/ has no repeated vertex then its vertices and edges form a u, v-path
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Example-lll

e Prove that every u, v-walk contains a u, v-path.

e Proof by induction: which variable to choose?
e We use induction on the length of a u, v-walk W/

e Basis step: / = 0 - Having no edge, WV consists of a single vertex (u = v). This vertex is a
u, v-path of length 0

e Induction step: / > 1. We assume that the claim holds for walks of length less than /.

e If W/ has no repeated vertex then its vertices and edges form a u, v-path

o If Whas repeated node w, then deleting the edges and vertices between appearances of w
(leaving one copy of w) yields a shorter u, v-walk W contained in V.
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Example-lll

e Prove that every u, v-walk contains a u, v-path.

e Proof by induction: which variable to choose?

e We use induction on the length of a u, v-walk W/
e Basis step: / = 0 - Having no edge, WV consists of a single vertex (u = v). This vertex is a
u, v-path of length 0

e Induction step: / > 1. We assume that the claim holds for walks of length less than /.

e If W/ has no repeated vertex then its vertices and edges form a u, v-path

o If Whas repeated node w, then deleting the edges and vertices between appearances of w
(leaving one copy of w) yields a shorter u, v-walk W contained in V.

e By induction hypothesis, I/ contains a u, v-path P and this path is contained in W/
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Definition-X

e Connected graph

e Agraph Gis connected if it has a u, v-path whenever u, v € V( G). Otherwise, the graph is
a disconnected one
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Definition-X

e Connected graph

e Agraph Gis connected if it has a u, v-path whenever u, v € V( G). Otherwise, the graph is
a disconnected one

e Component
e The components of a graph G are its maximal connected subgraphs.

e A component is trivial if it has no edges, otherwise it is nontrivial.
e An isolated vertex is a vertex of degree 0
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Example-IV

e Prove: Every graph with n vertices and k edges has at least n — k components
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Example-IV

e Prove: Every graph with n vertices and k edges has at least n — k components

e Proof:
e An n-vertex graph with no edges has n components.
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Example-IV

e Prove: Every graph with n vertices and k edges has at least n — k components

e Proof:

e An n-vertex graph with no edges has n components.
e Adding an edge decreases the number of components by 0 or 1.
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Example-IV

e Prove: Every graph with n vertices and k edges has at least n — k components

e Proof:
e An n-vertex graph with no edges has n components.
e Adding an edge decreases the number of components by O or 1.
e Adding k edges can reduce the number of components by maximum of k. Hence the number
of components is at least n — k
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Definition-XI

e Cut-edge / Cut-vertex

e A cut-edge or cut-vertex of graph is an edge or vertex whose deletion increases the number
of components
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Definition-XI

e Cut-edge / Cut-vertex

e A cut-edge or cut-vertex of graph is an edge or vertex whose deletion increases the number
of components

e Weuse G — eor G — Mfor the subgraph obtained by deleting an edge e or set of edges M
e Weuse G — vor G — Sfor the subgraph obtained by deleting a vertex v or set of nodes S
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Example-V

e Prove: An edge is a cut-edge if and only if it belongs to no cycle
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Example-V
e Prove: An edge is a cut-edge if and only if it belongs to no cycle
e Proof:

e Let ebe an edge in a graph G with endpoints x and y, and let H be the component containing e

e Since deletion of ¢ affects no other component, it suffices to prove that H — e is connected if and only if e
belongs to a cycle
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Example-V
e Prove: An edge is a cut-edge if and only if it belongs to no cycle

e Proof:

e Let ebe an edge in a graph G with endpoints x and y, and let H be the component containing e

e Since deletion of ¢ affects no other component, it suffices to prove that H — e is connected if and only if e
belongs to a cycle

e Case I: Assume H — eis connected. It implies H — e contains a path (P') between x and y. Hence P and e
will form a cycle
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Example-V
e Prove: An edge is a cut-edge if and only if it belongs to no cycle

e Proof:

e Let ebe an edge in a graph G with endpoints x and y, and let H be the component containing e

e Since deletion of ¢ affects no other component, it suffices to prove that H — e is connected if and only if e
belongs to a cycle

e Case I: Assume H — eis connected. It implies H — e contains a path (P') between x and y. Hence P and e
will form a cycle

e Case lI: Suppose e lies in a cycle. Choose u, v € V(H). Since H is connected, H has a u, v-path P.

C
u X g Y v
[ o ---o °
P
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Example-V
e Prove: An edge is a cut-edge if and only if it belongs to no cycle

e Proof:

e Let ebe an edge in a graph G with endpoints x and y, and let H be the component containing e

e Since deletion of ¢ affects no other component, it suffices to prove that H — e is connected if and only if e
belongs to a cycle

e Case I: Assume H — eis connected. It implies H — e contains a path (P') between x and y. Hence P and e
will form a cycle

e Case lI: Suppose e lies in a cycle. Choose u, v € V(H). Since H is connected, H has a u, v-path P.

e If Pdoes not contain e, then Pexistsin H — e
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Example-V

e Prove: An edge is a cut-edge if and only if it belongs to no cycle

e Proof:

Let e be an edge in a graph G with endpoints x and y, and let H be the component containing e

Since deletion of ¢ affects no other component, it suffices to prove that H — e is connected if and only if e
belongs to a cycle

Case I: Assume H — eis connected. It implies H — e contains a path (P’) between x and y. Hence P’ and e
will form a cycle

Case II: Suppose ¢ lies in a cycle. Choose u, v € V(H). Since H is connected, H has a u, v-path P.

If P does not contain ¢, then Pexistsin H — e

If P contains e, suppose by symmetry that x is between v and y on P. Since H — e contains a u, x-path along

P, an x, y-path along C, and a y, v-path along P, the transitivity of connection relation implies that H — e has
a u, v-path C
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Example-V

e Prove: An edge is a cut-edge if and only if it belongs to no cycle

e Proof:

Let e be an edge in a graph G with endpoints x and y, and let H be the component containing e

Since deletion of ¢ affects no other component, it suffices to prove that H — e is connected if and only if e
belongs to a cycle

Case I: Assume H — eis connected. It implies H — e contains a path (P’) between x and y. Hence P’ and e
will form a cycle

Case II: Suppose ¢ lies in a cycle. Choose u, v € V(H). Since H is connected, H has a u, v-path P.

If P does not contain ¢, then Pexistsin H — e

If P contains e, suppose by symmetry that x is between v and y on P. Since H — e contains a u, x-path along
P, an x, y-path along C, and a y, v-path along P, the transitivity of connection relation implies that H — e has

a u, v-path C
Hence, H — eis connected
u X g Y v
® o ---0@ { ]
P
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Example-VI

e Prove: Every closed odd walk contains an odd cycle
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e Proof by induction. We use induction on the length / of a closed walk W/
e Basis step. / = 1. A closed walk of length 1 traverses a cycle of length 1
e Induction step: / > 1. Assume the claim for closed odd walks shorter than W.
e If W has no repeated vertex (other than the first and last), then [/ itself forms a cycle of
odd length
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e Prove: Every closed odd walk contains an odd cycle

e Proof by induction. We use induction on the length / of a closed walk W/
e Basis step. / = 1. A closed walk of length 1 traverses a cycle of length 1
e Induction step: / > 1. Assume the claim for closed odd walks shorter than W.
e If W has no repeated vertex (other than the first and last), then [/ itself forms a cycle of
odd length
e If vertex v is repeated in WV, then we view /V/ as starting at v and break |V into two u, v-
walks. Since W/ has odd length, one of these is odd and the other is even.
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e Prove: Every closed odd walk contains an odd cycle

e Proof by induction. We use induction on the length / of a closed walk W/

Basis step. / = 1. A closed walk of length 1 traverses a cycle of length 1

Induction step: / > 1. Assume the claim for closed odd walks shorter than W.

If W has no repeated vertex (other than the first and last), then WV itself forms a cycle of
odd length

If vertex v is repeated in /V/, then we view IV as starting at v and break W into two u, v~
walks. Since W/ has odd length, one of these is odd and the other is even.

The odd walk is shorter than W.
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Example-VI

e Prove: Every closed odd walk contains an odd cycle

e Proof by induction. We use induction on the length / of a closed walk W/

Basis step. / = 1. A closed walk of length 1 traverses a cycle of length 1

Induction step: / > 1. Assume the claim for closed odd walks shorter than W.

If W has no repeated vertex (other than the first and last), then WV itself forms a cycle of
odd length

If vertex v is repeated in /V/, then we view IV as starting at v and break W into two u, v~
walks. Since W/ has odd length, one of these is odd and the other is even.

The odd walk is shorter than W.

By induction hypothesis it contains an odd cycle.
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Example-VI

e Prove: A graph is bipartite if and only if it has no odd cycle
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