Discrete Mathematics

Sets

Arijit Mondal
Dept of CSE
arijit@iitp.ac.in

Sets

- A set is an unordered collection of distinct objects, called elements or members of the set. A set is said to contain its elements. We write $a \in A$ to denote that a is an element of the set A. The notation $a \notin A$ denotes that a is not an element of the set A.

Sets

- A set is an unordered collection of distinct objects, called elements or members of the set. A set is said to contain its elements. We write $a \in A$ to denote that a is an element of the set A. The notation $a \notin A$ denotes that a is not an element of the set A.
- Example:
- The set of all vowels in the English alphabet, $V=\{a, e, i, o, u\}$
- The set of odd positive integers less than $10, O=\{1,3,5,7,9\}$
- Alternative notation, $O=\{x \mid x$ is an odd positive integer less than 10 $\}$
- Set of positve integers, $O=\left\{x \in \mathbf{Z}^{+} \mid x\right.$ is odd and $\left.x<10\right\}$

Sets

- A set is an unordered collection of distinct objects, called elements or members of the set. A set is said to contain its elements. We write $a \in A$ to denote that a is an element of the set A. The notation $a \notin A$ denotes that a is not an element of the set A.
- Example:
- The set of all vowels in the English alphabet, $V=\{a, e, i, o, u\}$
- The set of odd positive integers less than $10, O=\{1,3,5,7,9\}$
- Alternative notation, $O=\{x \mid x$ is an odd positive integer less than 10 $\}$
- Set of positve integers, $O=\left\{x \in \mathbf{Z}^{+} \mid x\right.$ is odd and $\left.x<10\right\}$
- Subset

Well known sets

- $\mathbf{N}=\{0,1,2, \ldots\}$, the set of all natural numbers
- $\mathbf{Z}=\{\ldots,-2,-2,0,1,2, \ldots\}$, the set of all integers
- $\mathbf{Z}^{+}=\{1,2, \ldots\}$, the set of all positive integers
- $\mathbf{Q}=\{p / q \mid p \in \mathbf{Z}, q \in \mathbf{Z}$ and $q \neq 0\}$, the set of all rational numbers
- \mathbf{R}, the set of all real numbers
- \mathbf{R}^{+}, the set of all positive real numbers
- C , the set of all complex numbers

Intervals

- Closed interval - $[a, b]$
- Open interval - (a, b)

Empty set

- This is a special set that has no element
- Also, known as null set.
- It is denoted as \emptyset or $\}$

Empty set

- This is a special set that has no element
- Also, known as null set.
- It is denoted as \emptyset or $\}$
- What is the difference between \emptyset and $\{\emptyset\}$

Empty set

- This is a special set that has no element
- Also, known as null set.
- It is denoted as \emptyset or $\}$
- What is the difference between \emptyset and $\{\emptyset\}$
- For every set $S, \emptyset \subseteq S$

Size of a set

- Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by $|S|$.

Size of a set

- Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by $|S|$.
- A set is said to be infinite if it is not finite

Power sets

- Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is denoted by $P(S)$.

Power sets

- Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is denoted by $P(S)$.
-What is the power set of the following?
- $S=\{0,1,2\}$

Power sets

- Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is denoted by $P(S)$.
-What is the power set of the following?
- $S=\{0,1,2\}$
- $S=\emptyset$

Power sets

- Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is denoted by $P(S)$.
-What is the power set of the following?
- $S=\{0,1,2\}$
- $S=\emptyset$
- $S=\{\emptyset\}$

Cartesian product

- Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence, $A \times B=$ $\{(a, b) \mid a \in A \wedge b \in B\}$

Set operations \& terminologies

- Union

- Intersection
- Disjoint set
- Set difference
- Complement set
- De Morgan's law

Problems

- Let $A_{i}=\{i, i+1, \ldots\}$ for $i=1,2, \ldots$. Find $\bigcup_{i=1}^{n} A_{i}, \bigcap_{i=1}^{n} A_{i}$

Problems

$$
\begin{aligned}
& \text { - Let } A_{i}=\{i, i+1, \ldots\} \text { for } i=1,2, \ldots \text {. Find } \bigcup_{i=1}^{n} A_{i}, \bigcap_{i=1}^{n} A_{i} \\
& \text { - Let } A_{i}=\{1,2, \ldots, i\} \text { for } i=1,2, \ldots \text {. Find } \bigcup_{i=1}^{n} A_{i}, \bigcap_{i=1}^{n} A_{i}
\end{aligned}
$$

Functions

- Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write $f(a)=b$ if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write $f: A \rightarrow B$.

Functions

- Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write $f(a)=b$ if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write $f: A \rightarrow B$.
- If f is a function from A to B, we say that A is the domain of f and B is the codomain of f. If $f(a)=b$, we say that b is the image of a and a is a preimage of b. The range, or image, of f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f maps A to B.

Functions

- Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write $f(a)=b$ if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write $f: A \rightarrow B$.
- If f is a function from A to B, we say that A is the domain of f and B is the codomain of f. If $f(a)=b$, we say that b is the image of a and a is a preimage of b. The range, or image, of f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f maps A to B.
- Let f_{1} and f_{2} be functions from A to R. Then $f_{1}+f_{2}$ and $f_{1} f_{2}$ are also functions from A to R defined for all $x \in A$ by $\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x), \quad\left(f_{1} f_{2}\right)(x)=$ $f_{1}(x) f_{2}(x)$.

One-to-One and Onto functions

- A function f is said to be one-to-one, or an injection, if and only if $f(a)=f(b)$ implies that $a=b$ for all a and b in the domain of f. A function is said to be injective if it is one-to-one.

One-to-One and Onto functions

- A function f is said to be one-to-one, or an injection, if and only if $f(a)=f(b)$ implies that $a=b$ for all a and b in the domain of f. A function is said to be injective if it is one-to-one.
- A function f from A to B is called onto, or a surjection, if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a)=b$. A function f is called surjective if it is onto.

One-to-One and Onto functions

- A function f is said to be one-to-one, or an injection, if and only if $f(a)=f(b)$ implies that $a=b$ for all a and b in the domain of f. A function is said to be injective if it is one-to-one.
- A function f from A to B is called onto, or a surjection, if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a)=b$. A function f is called surjective if it is onto.
- The function f is a one-to-one correspondence, or a bijection, if it is both one-toone and onto. We also say that such a function is bijective.

Inverse function

- Let f be a one-to-one correspondence from the set A to the set B. The inverse function of f is the function that assigns to an element b belonging to B the unique element a in A such that $f(a)=b$. The inverse function of f is denoted by f^{-1}. Hence, $f^{-1}(b)=a$ when $f(a)=b$.

Cardinality of sets

- The sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write $|A|=|B|$.

Cardinality of sets

- The sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write $|A|=|B|$.
- A set that is either finite or has the same cardinality as the set of positive integers is called countable. A set that is not countable is called uncountable.

Cardinality of sets

- The sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write $|A|=|B|$.
- A set that is either finite or has the same cardinality as the set of positive integers is called countable. A set that is not countable is called uncountable.
- Example:
- Odd positive integers

Cardinality of sets

- The sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write $|A|=|B|$.
- A set that is either finite or has the same cardinality as the set of positive integers is called countable. A set that is not countable is called uncountable.
- Example:
- Odd positive integers
- All integers

Cardinality of sets

- The sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write $|A|=|B|$.
- A set that is either finite or has the same cardinality as the set of positive integers is called countable. A set that is not countable is called uncountable.
- Example:
- Odd positive integers
- All integers
- Set of positive rational numbers

Cardinality of sets

- The sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write $|A|=|B|$.
- A set that is either finite or has the same cardinality as the set of positive integers is called countable. A set that is not countable is called uncountable.
- Example:
- Odd positive integers
- All integers
- Set of positive rational numbers
- Set of real numbers

