I
Embedded Systems

Arijit Mondal

Dept. of Computer Science & Engineering
Indian Institute of Technology Patna
arijit@iitp.ac.in

IIT Patna




Input & Output




Things to consider

e Mechanical and electrical properties of the interfaces are important
e Drawing too much current may result in malfunction
e In physical world most of the things run in parallel, software is sequential

e Incorrect interaction between sequential code and concurrent event in physical
world may lead to catastrophe

IIT Patna 3



Interfaces

e Pulse width modulation (PWM)
e Used to deliver variable power
e Speed of motor, brightness of LED
e Duty cycle is one of the key parameters
e Typically operates using memory-mapped register

e General purpose digital 1/0 (GPIO)

A number of general purpose 1/0 pins are available in most microcontrollers
Voltage level in the pins are read/written to represent logic O or 1

Active high vs active low logic

External physical devices can be connected

e Need to check current level

e May require power amplifier

Electrical isolation
Schmitt triggered, Tristate

IIT Patna 4



Connection

microcontroller

register

drive
transistor

GPIO
pin

image source: Introduction to Embedded Systems book

IIT Patna




Connection

VDD

pull-up

| microcontroller

| microcontroller

resistor

microcontroller

register

drive
transistor

GPIO pin

7" GPIO pin
GPIO pin

image source: Introduction to Embedded Systems book

IIT Patna



Serial interface

e Embedded processor requires physical small package and low power consumption
e Number of pins need to be reduced

e Send information serially as sequence of bits

e RS232 - one of the popular standard

Sender and receiver first agree on transmission rate

Sender initiates transmission of byte with a start bit that alerts receiver

Sender sends the data with agreed upon rate

There will be one or two stop bits

Receiver reset upon receiving start bit and samples the data using agreed upon rate

e USB-3.0 — 4.8 GBits/sec
e 12C, SPI, PCl express

IIT Patna 7



Parallel interface

e It uses multiple lines to simultaneously send data
e Each line is a serial interface

e Printer port (IEEE-1284)
e GPIO pins can be used to realize parallel interface
e Challenges are to maintain synchrony

IIT Patna 8



¢ Interface shared among multiple devices
e USB - serial bus
e SCSI - parallel bus
e ISA bus, PCI
e Architecture must include media access control (MAC)

e MAC has single master that connect with slaves
e Time triggered bus, token ring

IIT Patna 9



Interrupt and exception

e Interrupt - pausing of execution of whatever processor is currently doing and start
executing predefined code sequence

e Interrupt service routine (ISR)
e Can be triggered by software or external hardware

e Exception is triggered by internal hardware that detects a fault

e For hardware or software interrupt program resumes its normal execution after com-
pletion of ISR

e Exception has the highest priority

IIT Patna 10



volatile uint timerCount=0;
void countDown(void){ SysTickPeriodSet (SysCt1ClockGet () /1000) ;
if (timerCount != 0){ SysTickIntReg(&countDown) ;
timerCount- -; SysTickEnable();
} SysTickIntEnable() ;
}

int main(){
timerCount = 2000;

while(timerCount != 0){
code run for 2 sec...
}

}

IIT Patna 1



Interrupt modeling

volatile uint timerCount = 0; variables: timerCount: uint
void ISR (void) { input: assert: pure
. . output: return: pure
D . disable interrupts
E—3 if (timerCount != 0) { timerCount := timerCount - 1 / return

timerCount--;

. enable interrupts

}

int main (void) {
// initialization code
SysTickIntRegister (&ISR);

assert / .
timerCount # 0 /

.// other init timerCount # 0 /
A timerCount = 2000;
B while (timerCount != 0) {

. code to run for 2 seconds
timerCount := 2000

) timerCount =0 /

c .. whatever comes next

image source: Introduction to Embedded Systems book
IIT Patna 12



input: assert, return: pure

Interrupt modeling

assert /
2N
Inactive Active
return /

A—

>
B—>
id

int main(void) {

// initialization code
SysTickIntRegister (&ISR);
.. // other init
timerCount = 2000;
while (timerCount != 0) {
. code to run for 2 seconds

volatile uint timerCount
void ISR (void)
. disable interrupts

>

o=

if (timerCount
timerCount--;

}

image source: Introduction to Embedded Systems book

. enable interrupts




Interrupt modeling

variables: timerCount: uint
input: assert: pure, return: pure
output: return: pure

Inactive

assert /

return /

timerCount # 0 /

timerCount := 2000

timerCount =0 /

image source: Introduction to Embedded Systems book

IIT Patna

timerCount :

e

/ return
timerCount - 1

timerCount # 0 /

timerCount = 0 / return




Interrupt modeling

variables: rimerCount: uint
input: assert: pure

timerCount := 2000

assert / assert /

/

i timerCount--

/

i timerCount--

timerCount # 0 /

timerCount # 0 / timerCount #0 /

image source: Introduction to Embedded Systems book
IIT Patna




