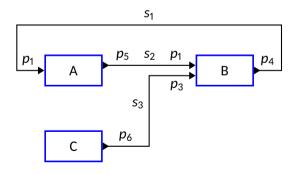
Embedded Systems

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

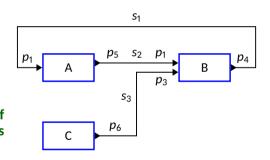
Model of Computation

Introduction


- Big systems are developed by composing elements
- Need to handle concurrent composition
- Actor composition
 - Actor can be FSM, hardware, code, etc.
- Three things need to be defined while composing elements
 - List of components
 - Concurrency mechanism
 - Communication mechanism

Components

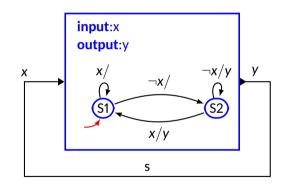
- An actor with input, output ports and a set of execution actions
 - Port will be interconnected to provide communication between actors
 - Execution action will be invoked by environment


Structure of model

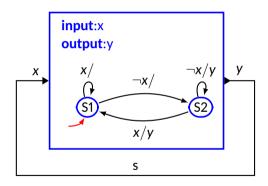
- Fixed interconnection
- Communication takes place through signals
 - Discrete signal
 - Continuous signal

System of equations for actor network

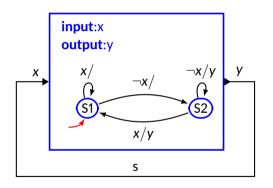
- If actor is determinate, then actor is a function that maps input to output
- For example
 - $s_2 = A(s_1)$
 - $s_1 = B(s_2, s_3)$
 - $s_3 = C(\emptyset)$
 - For a system, s' = F(s)
- Fixed point
 - Given any function $F: X \to X$ for any set X, if there is an $x \in X$ such that x = F(x) then x is called fixed point
 - Existence of fixed point
 - Uniqueness of fixed point
 - Procedure for finding fixed point

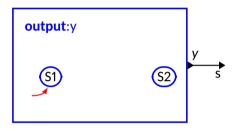

Synchronous reactive model

- Need to know inputs at the time of reaction
- But it is the same as output
 - Circular dependency
- Synchronous reactive (SR) model of computation is proposed
 - Signals are absent at all time except at ticks of a global clock
 - Execution of a model is a sequence of global reactions that occur at discrete time
 - Reaction of all actors is simultaneous and instantaneous

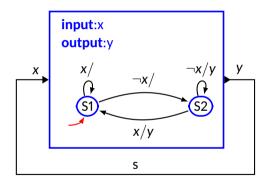


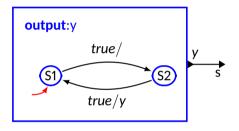
Feedback model


- Given the current state determine the value of s(n), value at the nth reaction
- If machine is in s_1 then $a_{s_1} = absent$
 - a_{s_1} is the firing function in state s_1
- We are looking for $s(n) = a_i(s(n))$;

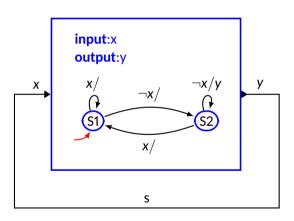


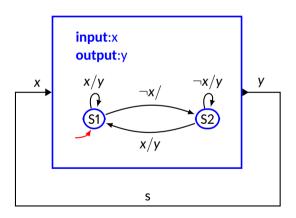
Semantics




Semantics

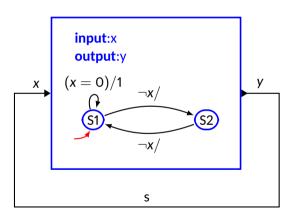
Semantics




Well formed vs Ill formed

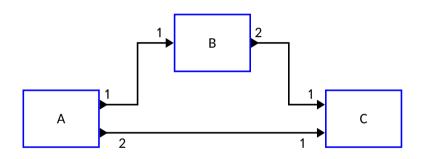
- While finiding out the fixed point we may come across the following
 - All states are reachable but no fixed point
 - All states are reachable but more than one fixed point
- In the above scenarios, we call the system to be ill formed
- Otherwise, well formed

Ill formed


Non-unique fixed point

Constructing a fixed point

- Start with s(n) unknown
- Determine as much as possible about $f_i(s(n))$ using only firing function
- Repeat above step untill all values in s(n) become known
- If unknown remains, then reject the model


Not constructive

Synchronous dataflow model

Synchronous dataflow model

Summary

- There exists many other modeling schemes with varied semantics
- One needs to choose appropriate scheme for the problem at hand