Embedded Systems

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Modeling: Hybrid systems

Introduction

- Most of the systems have both continuous and discrete behavior
- Continuous behavior can be modeled by ODE and discrete behavior by FSM
- Need to have separate modeling scheme to describe both the behavior
- Usually, states in discrete modelling are enhanced with time based behavior

Hybrid systems: example

- Digital controller
 - Thermostat
 - Automatic cruise control
 - Aircraft autopilot
- Phased operation
 - Bouncing ball
 - Biological cell growth
- Multiagent systems
 - Interaction of robots
 - Ground and air transportation systems

Timed automata

Double click detector

Bouncing ball

Thermostat

Example: pedestrian crosswalk

variable: count : {0, 1, ..., 60} **input:** pedestrian: pure output: sigY, sigG, sigR: pure green $count \ge 60/sigG$ $\dot{x}(t) = 0$ φ edestrian \wedge x(t) < 60/x(t) := 0pedestrian $\wedge x(t) \geq 60/\text{sigY}$ pending red x(t) := 0x(t) := 0 $x(t) \geq 60/\text{sigY}$ $x(t) \geq 5/sigR$ yellow x(t) := 0x(t) := 0

Buck converter

Buck converter: Mode 1

Buck converter: Mode 2

Buck converter: hybrid automata

right
$$\dot{x}, \dot{y}, \dot{ heta}$$
 $e = f(x, y)$

$$\dot{x}, \dot{y}, \dot{ heta}$$
 $arepsilon = f(x, y)$

$$egin{aligned} \mathsf{stop} \ \dot{\mathsf{x}}, \dot{\mathsf{y}}, \dot{ heta} \ e = \mathsf{f}(\mathsf{x}, \mathsf{y}) \end{aligned}$$

left
$$\dot{x},\dot{y},\dot{ heta}$$
 $arepsilon=f(x,y)$

right
$$\dot{x}, \dot{y}, \dot{ heta}$$
 $e = f(x, y)$

$$\dot{x}, \dot{y}, \dot{ heta}$$
 $e = f(x, y)$

$$x(t) := 0$$

$$x, \dot{y}, \dot{\theta}$$

$$e = f(x, y)$$

left
$$\dot{x}, \dot{y}, \dot{ heta}$$
 $arepsilon = f(x, y)$

Summary

- Hybrid systems provide a bridge between continuous and discrete dynamics
- Hierarchical description of the system
- Each mode is time-based operation, that is, refinement of state
- State machine to describe mode transition, refinement of state provides continuous dynamics