
IIT Patna 1

Embedded Systems

Arijit Mondal
Dept. of Computer Science & Engineering
Indian Ins�tute of Technology Patna
arijit@iitp.ac.in

IIT Patna 2

Modeling: Discrete systems

IIT Patna 3

Introduc�on
• Embedded systems can include both discrete and con�nuous dynamics
• Con�nuous dynamics can be modeled by ordinary differen�al equa�on
• State machines are used to model discrete behavior of the systems
• A system operates in a sequence of discrete steps
• Example
• Number of cars in a parking area

IIT Patna 4

Car parking
• Arrival detector, departure detector

Arrival
Detector

Departure
detector

Counter∑
i

Display
count

• Similar to integrator
• Input is not con�nuous u : R→ {absent, present}
• Also known as pure signal

IIT Patna 5

Event
• Systems are event triggered
• Sequence of steps known as reac�on
• A par�cular reac�on will observe the values of the inputs at a par�cular �me and
calculate output values for the same �me
• An actor has input ports P = {p1, p2, . . . , pN}
• Vp denotes the type of p (values may be received)
• At each reac�on a variable can take p ∈ Vp ∪ {absent}

IIT Patna 6

No�on of state
• State of a system is its condi�on at a par�cular point of �me
• State affects how the system reacts to inputs
• Integrator : discrete vs con�nuous
• Discrete modes with finite state space are called finite state machine

IIT Patna 7

Finite State Machine
• A statemachine is amodel with discrete dynamics thatmaps valua�ons of the inputs
to outputs where the map may depend on its current state

State 1 State 2

State 3

guard/ac�on
Ini�al

IIT Patna 8

Finite State Machine: example

0 1 2 ... M
up ∧ ¬down/1 up ∧ ¬down/2 up ∧ ¬down/3 up ∧ ¬down/M

down ∧ ¬up/0 down ∧ ¬up/1 down ∧ ¬up/2 down ∧ ¬up/M− 1

inputs: up, down: pure
outputs: count:{0, 1, . . . ,M}

IIT Patna 9

Transi�on
• It governs the discrete dynamics of FSM
• Guard/Ac�on
• Guard determines whether the transi�on may take on a reac�on
• Ac�on specifies the output for each reac�on
• If p1 and p2 are inputs to FSM
• true— transi�on is always enabled
• p1 — transi�on is enabled if p1 is present
• ¬p1 — transi�on is enabled if p1 is absent
• p1 ∧ p2 — transi�on is enabled if both p1 and p2 are present
• p1 ∨ p2 — transi�on is enabled if either p1 or p2 are present

IIT Patna 10

Default transi�on

0 ...

up ∧ ¬down/1

true/

¬up ∧ down/0

IIT Patna 11

Finite State Machine: example

Cooling Hea�ng

temp ≤ 18/off

temp ≥ 22/on

inputs: temp: R
outputs: on, off: pure

IIT Patna 12

FSM Defini�on
• It is a tuple 〈States, Inputs,Outputs,Update, Ini�alState〉
• States — finite number of states
• Inputs — set of input valua�ons
• Outputs — set of output valua�ons
• Update — States× Inputs→ States× Outputs, mapping a state and input valua�on
to a next state and a output valua�on
• Ini�alState — start state

0 1 2 ... M
up ∧ ¬down/1 up ∧ ¬down/2 up ∧ ¬down/3 up ∧ ¬down/M

down ∧ ¬up/0 down ∧ ¬up/1 down ∧ ¬up/2 down ∧ ¬up/M− 1

inputs: up, down: pure
outputs: count:{0, 1, . . . ,M}

IIT Patna 13

FSM example
• States = {0, 1, 2, . . . ,M}
• Inputs = {up, down} → {present, absent}
• Outputs = {count} → {0, 1, 2, . . . ,M}
• Ini�alState = 0

• update(s, i) =


(s+ 1, s+ 1) if s < M ∧ up = present ∧ down = absent
(s− 1, s− 1) if s > 0 ∧ up = absent ∧ down = present
(s, absent) otherwise

IIT Patna 14

A few terminologies
• Determinacy— If for each state there is at most one transi�on enabled by each input
value
• Update func�on is not one to many mapping
• Same input will produce same output always
• Recep�veness — If for each state there is at least one transi�on possible on each
input symbol
• FSM is recep�ve as ’update’ is a func�on, not a par�al func�on
• Cha�ering — A system oscillates between two states rapidly
• Stu�ering — A system remains in the state due to absence of inputs and outputs
• Hysteresis — Dependence of the state of a system on its history.

IIT Patna 15

Mealy vs Moore machine
• Mealy machine
• Named a�er George Mealy
• Characterized by producing outputs when a transi�on is taken
• Moore machine
• Named a�er Edward Moore
• Produces the output when the machine is in a state
• Output is func�on of state only
• Strictly causal

• A Mealy machine can be converted into Moore machine
• A Moore machine can be converted into Mealy machine
• Mealy machine is preferred because of compactness and output is instantaneous
with respect to inputs

IIT Patna 16

Moore machine: example

0/0 1/1 2/2 ... M/M

up ∧ ¬down up ∧ ¬down up ∧ ¬down up ∧ ¬down

down ∧ ¬up down ∧ ¬up down ∧ ¬up down ∧ ¬up

inputs: up, down: pure
outputs: count:{0, 1, . . . ,M}

IIT Patna 17

Extended FSM

coun�ng

up ∧ ¬down ∧ c < M/c+ 1
c := c+ 1

¬up ∧ down ∧ c > 0/c− 1
c := c− 1

c := 0

variable: c : {0, 1, . . . ,M}
inputs: up, down: pure
outputs: count:{0, 1, . . . ,M}

IIT Patna 18

Extended FSM

State 1 State 2

guard/output ac�on
set ac�on

guard/output ac�on
set ac�on

Ini�al set
condi�on

variable declara�on
input declara�on
output declara�on

IIT Patna 19

Example: pedestrian crosswalk
• It starts with red
• It moves to green a�er 60 seconds
• It will remain in green if there is no pedestrian
• If the light goes to green, then it remains there at least for 60 seconds
• If there is a pedestrian, light becomes yellow if it has been green for more than 60
seconds
• The yellow light will remain for 5 seconds before it turns to red

IIT Patna 20

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY, sigG, sigR : pure

count := 0

count :=
count+ 1

count ≥ 60/sigG
count := 0

count < 60/
count := count+ 1

pedestrian ∧ count < 60/
count := count+ 1

count :=
count+ 1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count+ 1

count ≥ 5/sigR
count := 0

IIT Patna 20

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY, sigG, sigR : pure

count := 0

count :=
count+ 1

count ≥ 60/sigG
count := 0

count < 60/
count := count+ 1

pedestrian ∧ count < 60/
count := count+ 1

count :=
count+ 1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count+ 1

count ≥ 5/sigR
count := 0

IIT Patna 20

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY, sigG, sigR : pure

count := 0

count :=
count+ 1

count ≥ 60/sigG
count := 0

count < 60/
count := count+ 1

pedestrian ∧ count < 60/
count := count+ 1

count :=
count+ 1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count+ 1

count ≥ 5/sigR
count := 0

IIT Patna 20

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY, sigG, sigR : pure

count := 0

count :=
count+ 1

count ≥ 60/sigG
count := 0

count < 60/
count := count+ 1

pedestrian ∧ count < 60/
count := count+ 1

count :=
count+ 1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count+ 1

count ≥ 5/sigR
count := 0

IIT Patna 20

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY, sigG, sigR : pure

count := 0

count :=
count+ 1

count ≥ 60/sigG
count := 0

count < 60/
count := count+ 1

pedestrian ∧ count < 60/
count := count+ 1

count :=
count+ 1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count+ 1

count ≥ 5/sigR
count := 0

IIT Patna 20

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY, sigG, sigR : pure

count := 0

count :=
count+ 1

count ≥ 60/sigG
count := 0

count < 60/
count := count+ 1

pedestrian ∧ count < 60/
count := count+ 1

count :=
count+ 1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count+ 1

count ≥ 5/sigR
count := 0

IIT Patna 20

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY, sigG, sigR : pure

count := 0

count :=
count+ 1

count ≥ 60/sigG
count := 0

count < 60/
count := count+ 1

pedestrian ∧ count < 60/
count := count+ 1

count :=
count+ 1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count+ 1

count ≥ 5/sigR
count := 0

IIT Patna 20

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY, sigG, sigR : pure

count := 0

count :=
count+ 1

count ≥ 60/sigG
count := 0

count < 60/
count := count+ 1

pedestrian ∧ count < 60/
count := count+ 1

count :=
count+ 1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count+ 1

count ≥ 5/sigR
count := 0

IIT Patna 20

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY, sigG, sigR : pure

count := 0

count :=
count+ 1

count ≥ 60/sigG
count := 0

count < 60/
count := count+ 1

pedestrian ∧ count < 60/
count := count+ 1

count :=
count+ 1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count+ 1

count ≥ 5/sigR
count := 0

IIT Patna 20

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY, sigG, sigR : pure

count := 0

count :=
count+ 1

count ≥ 60/sigG
count := 0

count < 60/
count := count+ 1

pedestrian ∧ count < 60/
count := count+ 1

count :=
count+ 1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count+ 1

count ≥ 5/sigR
count := 0

IIT Patna 20

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY, sigG, sigR : pure

count := 0

count :=
count+ 1

count ≥ 60/sigG
count := 0

count < 60/
count := count+ 1

pedestrian ∧ count < 60/
count := count+ 1

count :=
count+ 1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count+ 1

count ≥ 5/sigR
count := 0

IIT Patna 20

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY, sigG, sigR : pure

count := 0

count :=
count+ 1

count ≥ 60/sigG
count := 0

count < 60/
count := count+ 1

pedestrian ∧ count < 60/
count := count+ 1

count :=
count+ 1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count+ 1

count ≥ 5/sigR
count := 0

IIT Patna 21

Extended FSM
• The state of an extended machine includes not only the informa�on about which
discrete state the machine is in, but also what values any variables have.
• Suppose there is, n discrete states, m variables each of which can take one of p possible
values

• Size of the state space will be |States| = npm

0 1 2 ... M
up ∧ ¬down/1 up ∧ ¬down/2 up ∧ ¬down/3 up ∧ ¬down/M

down ∧ ¬up/0 down ∧ ¬up/1 down ∧ ¬up/2 down ∧ ¬up/M− 1

inputs: up, down: pure
outputs: count:{0, 1, . . . ,M}

coun�ng

up ∧ ¬down ∧ c < M/c+ 1
c := c+ 1

¬up ∧ down ∧ c > 0/c− 1
c := c− 1

c := 0

variable: c : {0, 1, . . . ,M}
inputs: up, down: pure
outputs: count:{0, 1, . . . ,M}

IIT Patna 22

Example

coun�ng

up ∧ ¬down∧c < M/c+ 1
c := c+ 1

¬up ∧ down ∧ c > 0/c− 1
c := c− 1

c := 0

variable: c : {0, 1, . . . ,M}
inputs: up, down: pure
outputs: count:{0, 1, . . . ,M}

IIT Patna 23

Example: infinite states

red pending

green

yellow

variable: count : {0, 1, . . . ,M}
input: pedestrian : pure
output: sigY, sigG, sigR : pure

count := 0

count ≥ 60/sigG
count := 0

pedestrian ∧ count < 60/
count := count+ 1

count ≥ 60/sigY
count := 0count ≥ 5/sigR

count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count :=
count+ 1 count :=

count+ 1

count < 60/
count := count+ 1

count := count+ 1

IIT Patna 24

Pedestrian crosswalk: state count

none wai�ng

crossing

inputs: sigR, sigG, sigY : pure
output: pedestrian : pure

true/pedestrian

true/

sigR/sigG/

IIT Patna 25

Nondeterminism
• A state machine interacts with the environment
• Modeling of pedestrian

• If for any state, two dis�nct transi�ons with guards that can evaluate to true in the
same reac�on, then the machine is nondeterminis�c

IIT Patna 26

Nondeterminis�c FSM
• It is a tuple 〈States, Inputs,Outputs, possibleUpdates, Ini�alStates〉
• States — finite number of states
• Inputs — set of input valua�ons
• Outputs — set of output valua�ons
• possibleUpdates — States× Inputs→ 2States×Outputs, mapping a state and input valu-
a�on to a next state and a set of possible (next state, output) pairs. Also known as
Transi�on Rela�on
• Ini�alStates — start states

red

green

yellow

output: sigR, sigG, sigY : pure
input: pedestrian : pure

true/sigR

true/sigG

true/sigG

true/sigY

true/sigY

true/sigR

IIT Patna 27

Nondeterminis�c FSM

IIT Patna 28

Uses of nondeterminism
• Environment modeling — to hide irrelevant details
• Specifica�ons — system requirements imposes constraints on some features while
the others are unconstrained

• Probabilis�c FSM is different from Non-determinis�c FSM
• In probabilis�c FSM, every transi�on is associated with some probability

IIT Patna 29

Behavior & Traces
• Behavior of state machine is an assignment of such signals to each port such that the
signal on any output port is the output sequence produced by the input signals
• Example: garage counter

sup = {absent, absent, present, absent, present, present, . . .}
sdown = {absent, absent, absent, present, absent, absent, . . .}
scount = {absent, absent, 1,0, 1, 2, . . .}

• sup, sdown, scount together form the behavior
• For determinis�c FSM if input sequence is known the output sequence can be deter-
mined
• Set of all behaviors of a state machineM is called its language L(M)

IIT Patna 30

Behavior & Traces (contd.)
• A behaviormay bemore conveniently represented as a sequence of valua�ons called
observable trace
• If xi is input and Yi is output then following is an observable sequence
((x0, y0), (x1, y1), . . .)

• An execu�on trace may be defined as
((x0, s0, y0), (x1, s1, y1), . . .)

s0
x0/y0→ s1

x1/y1→ s2 . . .

...
...

...
...

...
...

...
...

yellow yellow green red

red green

red

true/sigY true/sigY
true/sigG true/sigR

true/sigR true/sigY

IIT Patna 31

Computa�on trees
• For nondeterminis�c machine, it may be useful to represent all possible traces

