Embedded Systems

Arijit Mondal

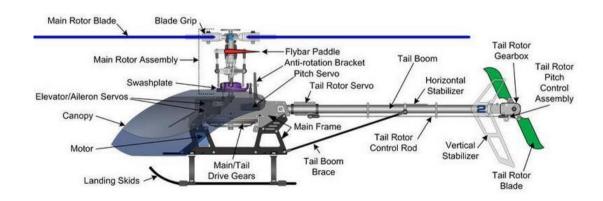
Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Modeling: Continuous Systems

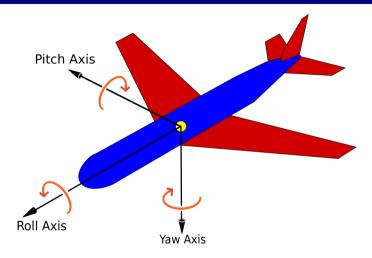
System modeling

- Mimic the real world behavior of the system
- There exist a large variety of systems
 - Mechanical, electrical, chemical, biological, etc.
- Behavior of most of the system can be described using differential equations
- Continuous dynamics
 - Modal models
 - Used for modeling discrete systems
 - For each mode, we have continuous dynamics
- Ordinary differential equation will be used to describe the system
 - Properties like linearity, time invariance, stability, etc. will be considered

Helicopter



Helicopter



• Motion of object can be represented with six degrees of freedom

- Motion of object can be represented with six degrees of freedom
 - Linear motion along x, y, z axis
 - Angular motion θ_x (roll), θ_y (yaw), θ_z (pitch)

- Motion of object can be represented with six degrees of freedom
 - Linear motion along x, y, z axis
 - Angular motion θ_x (roll), θ_y (yaw), θ_z (pitch)
- Position of an object may be specified using six functions $f: \mathbb{R} \to \mathbb{R}$
 - R denotes the time
 - R denotes the distance along an axis or angle relative to an axis

- Motion of object can be represented with six degrees of freedom
 - Linear motion along x, y, z axis
 - Angular motion θ_x (roll), θ_y (yaw), θ_z (pitch)
- Position of an object may be specified using six functions $f: \mathbb{R} \to \mathbb{R}$
 - R denotes the time
 - R denotes the distance along an axis or angle relative to an axis
- Sometime this may be represented $\mathbf{x}: \mathbb{R} \to \mathbb{R}^3$, $\boldsymbol{\theta}: \mathbb{R} \to \mathbb{R}^3$

- Motion of object can be represented with six degrees of freedom
 - Linear motion along x, y, z axis
 - Angular motion θ_x (roll), θ_y (yaw), θ_z (pitch)
- Position of an object may be specified using six functions $f: \mathbb{R} \to \mathbb{R}$
 - R denotes the time
 - R denotes the distance along an axis or angle relative to an axis
- Sometime this may be represented $\mathbf{x}: \mathbb{R} \to \mathbb{R}^3$, $\boldsymbol{\theta}: \mathbb{R} \to \mathbb{R}^3$
- Change in position or orientation can be determined by Newton's 2nd law

$$\mathbf{F}(t) = M\ddot{\mathbf{x}}(t)$$

• F - force, M - mass and \ddot{x} - second derivative ie. acceleration

• Solving the equation we get t>0, $\dot{\mathbf{x}}(t)=\dot{\mathbf{x}}(0)+\int_0^t \ddot{\mathbf{x}}(\tau)d\tau$

• Solving the equation we get t>0, $\dot{\mathbf{x}}(t)=\dot{\mathbf{x}}(0)+\int_0^t \ddot{\mathbf{x}}(\tau)d\tau$

• Rewriting,
$$t > 0$$
, $\dot{\boldsymbol{x}}(t) = \dot{\boldsymbol{x}}(0) + \frac{1}{M} \int_{0}^{t} \boldsymbol{F}(\tau) d\tau$

- Solving the equation we get t>0, $\dot{\mathbf{x}}(t)=\dot{\mathbf{x}}(0)+\int_0^t \ddot{\mathbf{x}}(\tau)d\tau$
- Rewriting, t > 0, $\dot{\boldsymbol{x}}(t) = \dot{\boldsymbol{x}}(0) + \frac{1}{M} \int_{0}^{t} \boldsymbol{F}(\tau) d\tau$
- We have, $\mathbf{x}(t) = \mathbf{x}(0) + \int_0^t \dot{\mathbf{x}}(\tau) d\tau$

- Solving the equation we get t>0, $\dot{\mathbf{x}}(t)=\dot{\mathbf{x}}(0)+\int_0^t\ddot{\mathbf{x}}(\tau)d\tau$
- Rewriting, t > 0, $\dot{\boldsymbol{x}}(t) = \dot{\boldsymbol{x}}(0) + \frac{1}{M} \int_{0}^{t} \boldsymbol{F}(\tau) d\tau$
- We have, $\mathbf{x}(t) = \mathbf{x}(0) + \int_0^t \dot{\mathbf{x}}(\tau) d\tau = \mathbf{x}(0) + t\dot{\mathbf{x}}(0) + \frac{1}{M} \int_0^t \int_0^\tau \mathbf{F}(\alpha) d\alpha d\tau$

- Solving the equation we get t>0, $\dot{\mathbf{x}}(t)=\dot{\mathbf{x}}(0)+\int_0^t \ddot{\mathbf{x}}(\tau)d\tau$
- Rewriting, t > 0, $\dot{\boldsymbol{x}}(t) = \dot{\boldsymbol{x}}(0) + \frac{1}{M} \int_{0}^{t} \boldsymbol{F}(\tau) d\tau$
- We have, $\mathbf{x}(t) = \mathbf{x}(0) + \int_0^t \dot{\mathbf{x}}(\tau)d\tau = \mathbf{x}(0) + t\dot{\mathbf{x}}(0) + \frac{1}{M}\int_0^t \int_0^\tau \mathbf{F}(\alpha)d\alpha d\tau$
- Rotational version of force is torque $extbf{T}(t) = rac{d}{dt} \left(extbf{I}(t) \dot{ heta}(t)
 ight)$
 - I Moment of inertia (depends on the geometry and orientation)

- Solving the equation we get t>0, $\dot{\mathbf{x}}(t)=\dot{\mathbf{x}}(0)+\int_0^t \ddot{\mathbf{x}}(\tau)d\tau$
- Rewriting, t > 0, $\dot{\boldsymbol{x}}(t) = \dot{\boldsymbol{x}}(0) + \frac{1}{M} \int_{0}^{t} \boldsymbol{F}(\tau) d\tau$
- We have, $\mathbf{x}(t) = \mathbf{x}(0) + \int_0^t \dot{\mathbf{x}}(\tau)d\tau = \mathbf{x}(0) + t\dot{\mathbf{x}}(0) + \frac{1}{M}\int_0^t \int_0^\tau \mathbf{F}(\alpha)d\alpha d\tau$
- Rotational version of force is torque $extbf{T}(t) = rac{d}{dt} \left(extbf{I}(t) \dot{ heta}(t)
 ight)$
 - I Moment of inertia (depends on the geometry and orientation)

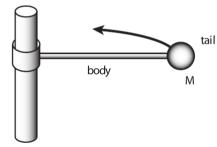
$$\theta(t) = \theta(0) + t\dot{\theta}(0) + \frac{1}{l} \int_{0}^{t} \int_{0}^{\tau} \mathbf{T}(\alpha) d\alpha d\tau$$

Helicopter model

- Helicopter has two rotors
 - Main rotor to lift
 - Tail rotor to counter balance spin
- Hence, we have

$$egin{align} \ddot{ heta}_{y}(t) &= T_{y}(t)/I_{yy} \Rightarrow \ \dot{ heta}_{y}(t) &= \dot{ heta}_{y}(0) + rac{1}{I_{yy}} \int_{0}^{t} T_{y}(au) \, d au \ . \end{split}$$

main rotor shaft



Actor model

• Physical system can be described by input (force, torque) and output (position, orientation, velocity, rotation, etc.)

- Usually X is time (domain) and Y value of particular signal (codomain)
 - $S: X \to Y, x, y \in \mathbb{R}$

Actor model

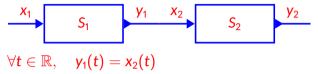
• Physical system can be described by input (force, torque) and output (position, orientation, velocity, rotation, etc.)

- Usually X is time (domain) and Y value of particular signal (codomain)
 - $S: X \to Y, x, y \in \mathbb{R}$
- Example



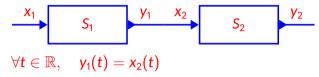
Actor model (contd.)

• Actor models are composable

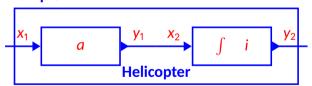


Actor model (contd.)

• Actor models are composable



Example

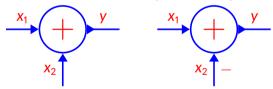


• We have $\forall t \in \mathbb{R}$ $y_2(t) = i + \int_0^t x_2(\tau) d\tau$ where $a = 1/I_{yy}, i = \dot{\theta}_y(0), x_1 = T_y$ and $y_2 = \dot{\theta}_y(0)$

Actor model (contd.)

Actor can have multiple inputs

• Another useful building block is signal adder



• $y(t) = x_1(t) + x_2(t), y(t) = x_1(t) - x_2(t)$

Properties of systems

- Causal system
- Memoryless systems
- Linear and time invariant
- Stability
- Feedback control

Causal systems

- Output depends only on current and past inputs
- Consider a continuous time signal x
- Let $x|_{t \leq \tau}$ represent restriction in time defined only for $t \leq \tau$
- Consider a continuous time system $S: X \to Y$, the system is causal if for all $x_1, x_2 \in X$ and $\tau \in R$, $x_1|_{t \le \tau} = x_2|_{t \le \tau} \Rightarrow S(x_1)|_{t \le \tau} = S(x_2)|_{t \le \tau}$
- Strictly causal $\forall \tau \in R$, $x_1|_{t<\tau} = x_2|_{t<\tau} \Rightarrow S(x_1)|_{t\leq \tau} = S(x_2)|_{t\leq \tau}$

Causal systems

- Output depends only on current and past inputs
- Consider a continuous time signal x
- Let $\mathbf{x}|_{t \leq \tau}$ represent restriction in time defined only for $t \leq \tau$
- Consider a continuous time system $S: X \to Y$, the system is causal if for all $x_1, x_2 \in X$ and $\tau \in R$, $x_1|_{t<\tau} = x_2|_{t<\tau} \Rightarrow S(x_1)|_{t<\tau} = S(x_2)|_{t<\tau}$
- Strictly causal $\forall \tau \in R$, $x_1|_{t < \tau} = x_2|_{t < \tau} \Rightarrow S(x_1)|_{t \le \tau} = S(x_2)|_{t \le \tau}$
- Example
 - Integrator is strictly causal
 - Adder is not strictly causal but causal
- Strictly causal actors are good for continuous feedback system

Memoryless systems

- A systems has memory if the output depends not only on the current inputs but also on the past inputs
- Formally, $S: X \to Y$ the system is memoryless if there exist a function $f: X \to Y$ such that for all $x \in X$, (S(x))(t) = f(x(t)) for all $t \in R$

Memoryless systems

- A systems has memory if the output depends not only on the current inputs but also on the past inputs
- Formally, $S: X \to Y$ the system is memoryless if there exist a function $f: X \to Y$ such that for all $x \in X$, (S(x))(t) = f(x(t)) for all $t \in R$
- Example
 - Integrator is not memoryless
 - Adder is memoryless

Linear and time invariant (LTI)

 A systems S: X → Y where X and Y are sets of signals is linear if it satisfies the superposition property

$$\forall x_1, x_2 \in X \text{ and } \forall a, b \in R \quad S(ax_1 + bx_2) = aS(x_1) + bS(x_2)$$

- Time invariance means that whether we apply an input to the system now or *T* seconds from now, the output will be identical except for a time delay of *T* seconds.
 - Let D_{τ} be the delay operator such that $(D_{\tau}(x))(t) = x(t-\tau)$
 - For time invariance, $S(D_{\tau}(x)) = D_{\tau}(S(x))$

Linear and time invariant (LTI)

 A systems S: X → Y where X and Y are sets of signals is linear if it satisfies the superposition property

$$\forall x_1, x_2 \in X \text{ and } \forall a, b \in R \quad S(ax_1 + bx_2) = aS(x_1) + bS(x_2)$$

- Time invariance means that whether we apply an input to the system now or *T* seconds from now, the output will be identical except for a time delay of *T* seconds.
 - Let D_{τ} be the delay operator such that $(D_{\tau}(x))(t) = x(t-\tau)$
 - For time invariance, $S(D_{\tau}(x)) = D_{\tau}(S(x))$

•
$$\dot{ heta}_{y}(t)=rac{1}{I_{yy}}\int_{-\infty}^{t}T_{y}(au)d au$$
 - LTI

• Many systems are approximated to LTI

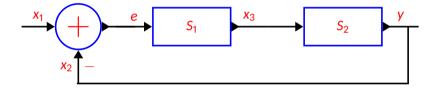
Stability

• A system is bounded input bounded output stable if the output signal is bounded for all inputs signals that are bounded

• Helicopter is unstable

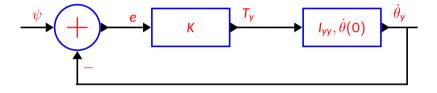
Feedback systems

• A system with feedback has directed cycle where an output from an actor is fed back to affect an input of the same actor

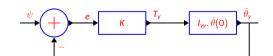


Example: No rotation

• Want to have 0 angular velocity

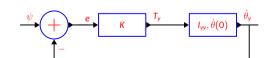


• Our equation remains the same, only input has changed.



• Our equation remains the same, only input has changed.

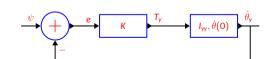
•
$$\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) + \frac{1}{I_{yy}} \int_{0}^{t} T_{y}(\tau) d\tau = \dot{\theta}_{y}(0) + \frac{1}{I_{yy}} \int_{0}^{t} (\psi(\tau) - \dot{\theta}_{y}(\tau)) d\tau$$



• Our equation remains the same, only input has changed.

$$\bullet \ \dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) + \frac{1}{I_{yy}} \int_{0}^{t} T_{y}(\tau) d\tau = \dot{\theta}_{y}(0) + \frac{1}{I_{yy}} \int_{0}^{t} (\psi(\tau) - \dot{\theta}_{y}(\tau)) d\tau$$

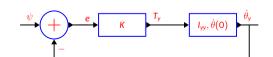
• We have, $e(t) = \psi(t) - \dot{\theta}_{y}(t)$, $T_{y}(t) = Ke(t)$



• Our equation remains the same, only input has changed.

•
$$\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) + \frac{1}{I_{yy}} \int_{0}^{t} T_{y}(\tau) d\tau = \dot{\theta}_{y}(0) + \frac{1}{I_{yy}} \int_{0}^{t} (\psi(\tau) - \dot{\theta}_{y}(\tau)) d\tau$$

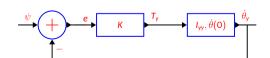
- We have, $e(t) = \psi(t) \dot{\theta}_{v}(t)$, $T_{v}(t) = Ke(t)$
- Reorganizing we get, $\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) \frac{K}{I_{yy}} \int_{0}^{t} \dot{\theta}_{y}(t) d\tau$



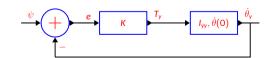
• Our equation remains the same, only input has changed.

•
$$\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) + \frac{1}{I_{yy}} \int_{0}^{t} T_{y}(\tau) d\tau = \dot{\theta}_{y}(0) + \frac{1}{I_{yy}} \int_{0}^{t} (\psi(\tau) - \dot{\theta}_{y}(\tau)) d\tau$$

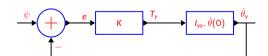
- We have, $e(t) = \psi(t) \dot{\theta}_{\scriptscriptstyle Y}(t)$, $T_{\scriptscriptstyle Y}(t) = \textit{Ke}(t)$
- Reorganizing we get, $\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) \frac{K}{I_{yy}} \int_{0}^{t} \dot{\theta}_{y}(t) d\tau$
- We know, $\int_0^t ae^{a\tau}d\tau = e^{at}u(t) 1$



- Our equation remains the same, only input has changed.
- $\bullet \ \dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) + \frac{1}{I_{yy}} \int_{0}^{t} T_{y}(\tau) d\tau = \dot{\theta}_{y}(0) + \frac{1}{I_{yy}} \int_{0}^{t} (\psi(\tau) \dot{\theta}_{y}(\tau)) d\tau$
- We have, $e(t) = \psi(t) \dot{\theta}_{\scriptscriptstyle Y}(t)$, $T_{\scriptscriptstyle Y}(t) = {\sf Ke}(t)$
- Reorganizing we get, $\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) \frac{K}{I_{yy}} \int_{0}^{t} \dot{\theta}_{y}(t) d\tau$
- We know, $\int_0^t ae^{a\tau}d\tau = e^{at}u(t) 1$
- Therefore we have, $\dot{ heta}_{ extsf{y}}(t) = \dot{ heta}_{ extsf{y}}(extsf{O})e^{-\textit{Kt}/\textit{I}_{ extsf{y}}}u(t)$

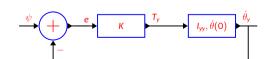


• Only input has changed. $\psi(t) = au(t)$



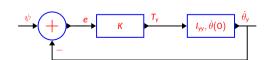
• Only input has changed. $\psi(t) = au(t)$

$$\dot{ heta}_{y}(t) = rac{1}{I_{yy}} \int_{0}^{t} T_{y}(au) d au = rac{K}{I_{yy}} \int_{0}^{t} (\psi(t) - \dot{ heta}_{y}(t)) d au$$



• Only input has changed. $\psi(t) = au(t)$

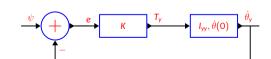
$$\begin{split} \dot{\theta}_{y}(t) &= \frac{1}{I_{yy}} \int_{0}^{t} T_{y}(\tau) d\tau = \frac{K}{I_{yy}} \int_{0}^{t} (\psi(t) - \dot{\theta}_{y}(t)) d\tau \\ &= \frac{K}{I_{yy}} \int_{0}^{t} a d\tau - \frac{K}{I_{yy}} \int_{0}^{t} \dot{\theta}_{y}(\tau) d\tau = \frac{Kat}{I_{yy}} - \frac{K}{I_{yy}} \int_{0}^{t} \dot{\theta}_{y}(\tau) d\tau \end{split}$$



• Only input has changed. $\psi(t) = au(t)$

$$\begin{split} \dot{\theta}_{y}(t) &= \frac{1}{I_{yy}} \int_{0}^{t} T_{y}(\tau) d\tau = \frac{K}{I_{yy}} \int_{0}^{t} (\psi(t) - \dot{\theta}_{y}(t)) d\tau \\ &= \frac{K}{I_{yy}} \int_{0}^{t} a d\tau - \frac{K}{I_{yy}} \int_{0}^{t} \dot{\theta}_{y}(\tau) d\tau = \frac{Kat}{I_{yy}} - \frac{K}{I_{yy}} \int_{0}^{t} \dot{\theta}_{y}(\tau) d\tau \end{split}$$

• $\dot{\theta}_{v}(t) = au(t)(1 - e^{-Kt/l_{yy}})$



Summary

- We have seen two different kinds of model
- Differential equations most fundamental way to model
- Acotr model mostly driven by the software
- Two models are very tightly related