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Modeling: Continuous Systems




System modeling

e Mimic the real world behavior of the system

There exist a large variety of systems

e Mechanical, electrical, chemical, biological, etc.

Behavior of most of the system can be described using differential equations
Continuous dynamics

e Modal models

e Used for modeling discrete systems
e For each mode, we have continuous dynamics

Ordinary differential equation will be used to describe the system
e Properties like linearity, time invariance, stability, etc. will be considered
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Helicopter
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Newtonian mechanics

e Motion of object can be represented with six degrees of freedom
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Newtonian mechanics

e Motion of object can be represented with six degrees of freedom
e Linear motion along x, y, z axis
e Angular motion 6y (roll), 8, (yaw), 6, (pitch)

e Position of an object may be specified using six functionsf : R — R

e R denotes the time
e R denotes the distance along an axis or angle relative to an axis

e Sometime this may be represented x : R — R3, 0 : R — R3
e Change in position or orientation can be determined by Newton’s 2nd law

F(t) = MX(t)

e F-force, M - mass and X - second derivative ie. acceleration

IIT Patna 6



Newtonian mechanics (contd.)

ot
e Solving the equationwe gett > 0, x(t) = x(0) + / X(7)dr
0
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Newtonian mechanics (contd.)

t
e Solving the equationwe gett > 0, x(t) = x(0) + / X(7)dr
0

ot
e Rewriting,t > 0, x(t) =x(0) + ﬁ / F(7)dr
JO
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Newtonian mechanics (contd.)

ot
e Solving the equationwe gett > 0, x(t) = x(0) + / X(7)dr
0

e Rewriting,t > 0, x(t) = x(0) +

|-
o
gl
—~
\]
N
Q.
ﬂ

e We have, x(t) = x(0) + /Ot)'((T)dT
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Newtonian mechanics (contd.)

ot
e Solving the equationwe gett > 0, x(t) = x(0) + / X(7)dr
0

e Rewriting,t > 0, x(t) = x(0) +

|-
o
gl
—~
\]
N
Q.
ﬂ

t
e We have, x(t) = x(0) + / x(7)dT = x(0) + tx(0 / / a)dadr
0
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Newtonian mechanics (contd.)
e Solving the equationwe gett > 0, x(t) = x(0) + /ti?(T)dT
0

e Rewriting,t > 0, x(t) = x(0) +

|-
o

gl

—~
\]

N
Q.
ﬂ

e We have, x(t) — x(0) + /O K(r)dr = x(0) + (0 / / o) dovdr

e Rotational version of force is torque T(t) = & (l(t)@(t))

e |- Moment of inertia (depends on the geometry and orientation)
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Newtonian mechanics (contd.)

ot
e Solving the equationwe gett > 0, x(t) = x(0) + / X(7)dr
0

e Rewriting,t > 0, x(t) = x(0) +

|-
o

gl

—~
\]

N
Q.
ﬂ

t
e We have, x(t) = x(0) + / x(7)dT = x(0) + tx(0 / / a)dadr
0

e Rotational version of force is torque T(t) = & (l(t)@(t))

e |- Moment of inertia (depends on the geometry and orientation)

0(t) — 6(0)+ th(0 // o) da dr
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Helicopter model

e Helicopter has two rotors main rotor shaft

e Main rotor to lift -

e Tail rotor to counter balance spin il
e Hence, we have \—1 /
ey(t) - Ty(t)/’w = I body M

6,(t) = éy<o>+,1y / T,() dr

y

(

Image source: Internet
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Actor model

e Physical system can be described by input (force, torque) and output (position, orien-
tation, velocity, rotation, etc.)

X y
—> S }—

e Usually X is time (domain) and Y value of particular signal (codomain)
e S:X—=Y,x,yeR
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Actor model

e Physical system can be described by input (force, torque) and output (position, orien-
tation, velocity, rotation, etc.)

X y
—> S }—

e Usually X is time (domain) and Y value of particular signal (codomain)
e S:X—=Y,x,yeR

e Example

Ty . éy
—> 1, 6(0)
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Actor model (contd.)

e Actor models are composable

X Y1 X2 Y2
—> S 52

VteR, wi(t) =x(t)
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Actor model (contd.)

e Actor models are composable

X Y1 X2 Y2
—> S 52

VteR, wi(t) =x(t)

e Example

X1 V4 X2 .. Y2
D> a [

Helicopter

't

e WehaveVt c R y,(t) =i+ / Xo(7)dT where a = 1/l,,, i = 6,(0), x; = T, and y, = 6,
0
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Actor model (contd.)

e Actor can have multiple inputs
X1
y
1

e Another useful building block is signal adder

X2

+X2 _x1 fxz
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Properties of systems

Causal system
Memoryless systems

Linear and time invariant
Stability
Feedback control
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Causal systems

e Output depends only on current and past inputs
e Consider a continuous time signal x

Let x|;— . represent restriction in time defined only for t < 7

Consider a continuous time system S : X — Y, the system is causal if for all x;, x, € X
and 7 € R, X1‘t§7— = X2|t§7— = 5(X1)‘t§7— = S(Xz)‘tgq—

Strictly causal V7 € R, X¢|tr = Xa|t<r = S(X1)|t<r = S(X2)|t<+
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Causal systems

e Output depends only on current and past inputs
e Consider a continuous time signal x
e Let x|;<, represent restriction in time defined only for t < 7

e Consider a continuous time system S : X — Y, the system is causal if for all x;, x, € X
and 7 € R, Xi|i<r = Xo|t<r = S(X1)|t<r = S(X2)|t<+

e Strictly causal V7 € R, Xxi[ter = Xo|t<r = S(X1)|t<r = S(X2)|t<-

e Example

e Integrator is strictly causal
e Adder is not strictly causal but causal

e Strictly causal actors are good for continuous feedback system
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Memoryless systems

e A systems has memory if the output depends not only on the current inputs but also
on the past inputs

e Formally, S : X — Y the system is memoryless if there exist a function f : X — Y such
that for all x € X, (S(x))(t) = f(x(t)) forall t € R
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Memoryless systems

e A systems has memory if the output depends not only on the current inputs but also
on the past inputs

e Formally, S : X — Y the system is memoryless if there exist a function f : X — Y such
that for all x € X, (S(x))(t) = f(x(t)) forall t € R
e Example

e Integrator is not memoryless
e Adder is memoryless
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Linear and time invariant (LTI)

e Asystems S : X — Y where X and Y are sets of signals is linear if it satisfies the
superposition property

Vxi, x € XandVa,b € R S(ax; + bx,) = aS(x4) + bS(xz)

e Timeinvariance means that whether we apply aninput to the system now or T seconds
from now, the output will be identical except for a time delay of T seconds.

e Let D, be the delay operator such that (D, (x))(t) = x(t — 7)
e For time invariance, S(D,(x)) = D,(5(x))
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Linear and time invariant (LTI)

e Asystems S : X — Y where X and Y are sets of signals is linear if it satisfies the
superposition property

Vxi, x € XandVa,b € R S(ax; + bx,) = aS(x4) + bS(xz)

e Timeinvariance means that whether we apply aninput to the system now or T seconds
from now, the output will be identical except for a time delay of T seconds.
e Let D, be the delay operator such that (D, (x))(t) = x(t — 7)
e For time invariance, S(D,(x)) = D,(5(x))

o O,(t) = 1/% T,(7)dr - LTl

yy J—o0
e Many systems are approximated to LTI
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Stability

e A system is bounded input bounded output stable if the output signal is bounded for
all inputs signals that are bounded

e Helicopter is unstable
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Feedback systems

e A system with feedback has directed cycle where an output from an actor is fed back
to affect an input of the same actor

X1 e X3 y

S S2 [
XQT—
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Example: No rotation

e Want to have 0 angular velocity

Ty éy
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Example: No rotation (contd.)

e Our equation remains the same, only input has changed.

" e T, : 0y
— K Iy, 6(0)
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Example: No rotation (contd.)

e Our equation remains the same, only input has changed.

o 4,(t) = 6,(0) + ,1 | / T(r)dr = 6,(0) + - / (6() — b,()) dr

IYY

" e T, : 0y
— K Iy, 6(0)

IIT Patna 19




Example: No rotation (contd.)

e Our equation remains the same, only input has changed.

¢ 50 =00+ = [ ) dr =i+ - [ (0r) ~iym)ar

e We have, e(t) = 4 (t) — 0,(t), T,(t) = Ke(t)yy

" e T, : 0y
— K Iy, 6(0)
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Example: No rotation (contd.)

e Our equation remains the same, only input has changed.

o 6,(t) = 6,(0) + ,1 | / T,(r) dr = 6,(0) + ,1 / (6() — b,()) dr
o We have, e(t) = () — 0,(t), T,(t) = Ke(t)

) ) K [t.
e Reorganizing we get, 0,(t) = 0,(0) — ™ / 6,(t)dr
yy JO

" e T, : 0y
— K Iy, 6(0)
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Example: No rotation (contd.)

e Our equation remains the same, only input has changed.

¢ 50 =00+ = [ ) dr =i+ - [ (0r) ~iym)ar

Yy

t
Reorganizing we get, 0, (t) = 6,(0) — — [ 0,(t)dr
yy JO

We have, e(t) = 4 (t) — 6,(t), T,(t) = Ke(t)
K

t
We know, / ae’dr = e®u(t) —1
0
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Example: No rotation (contd.)

e Our equation remains the same, only input has changed.

¢ 50 =00+ = [ ) dr =i+ - [ (0r) ~iym)ar

Yy

t

We have, e(t) = 4 (t) — 6,(t), T,(t) = Ke(t)
: : K :
Reorganizing we get, 0, (t) = 6,(0) — — [ 0,(t)dr

t
We know, / ae’dr = e®u(t) —1
0

Therefore we have, 0, (t) = 6,(0)e /™ u(t)
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Example: Constant rotation

e Only input has changed. )(t) = au(t)

" e T, : 0y
— K Iy, 6(0)
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Example: Constant rotation

e Only input has changed. ¢/(t) = au(t

0,(t) = WA m/

" e T, : 0y
— K Iy, 6(0)
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Example: Constant rotation

e Only |nput has changed. )(t) = au(t)

0,(t) = / m/

Kat K [!.
/adT—/Q dT_i—— 6,(r)dr

’YY 0

" e T, : 0y
— K Iy, 6(0)
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Example: Constant rotation

e Only |nput has changed. )(t) = au(t)

0,(t) = / m/

Kat K [!.
/adT—/Q dT_i—— 6,(r)dr

’YY 0

o 6,(t) = au(t)(1— e~/

" e T, : 0y
— K Iy, 6(0)
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e We have seen two different kinds of model

e Differential equations - most fundamental way to model
e Acotr model - mostly driven by the software

e Two models are very tightly related
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