
Introduction to Keras: Theory and Examples

IIT PATNA

1



OUTLINE

Introduction to Google Colab

Keras

Introduction
Fully Connected Neural Network
Convolution Neural Network
Working with own data

2



Confession

Introductory (Hello World)

Internet (sources at the end)

3



Part 0: Google Colab

4



Introduction to Google Colab

Product by Google

Google’s free cloud service with GPU support for AI developers

CPU ⇔ GPU ⇔ TPU
Python programming language
Support to many neural network libraries such as Keras, PyTorch,
OpenCV

Files are stored on Drive

5



Introduction to Google Colab

https://github.com/

nrjcs/swym

https://colab.research.google.com/

Notebook: list of cells (code or text)

can be shared

collaborated

GitHub

Default folder is Colab Notebooks

welcome example

6

https://github.com/
https://colab.research.google.com/
https://github.com/nrjcs/swym/blob/master/swym_welcome.ipynb


Part I: Regular Neural Network

7



Introduction

DLMLAI

8



Architecture of a Neural Network

Figure: A Neural Network
9



Architecture of a Neural Network

Figure: A Neural Network

Learning Steps (Decisions to be made):

1 Application (Problem)

2 Type of model

3 No. of layers

4 No. of nodes

5 Initialization of weights

6 Activation Function

7 Optimization Function

8 Evaluation Metrics

9 Dataset

10 Testing and Training Data

11 Batch size

12 Epoch

10



Keras

NN: development (implementation and experimentation) is difficult.

Keras is

high-level neural networks library

written in Python

capable of running on top of

TensorFlow (open source software library for numerical computation)
Theano (numerical computation library for Python)
CNTK (Microsoft Cognitive Toolkit): Deep learning framework

developed with a focus on enabling fast experimentation (through
user friendliness, modularity, and extensibility)

and much more visit

11

https://keras.io/


Guiding principles

Modularity
configurable modules

neural layers, cost functions, optimizers, initialization schemes,
activation functions, regularization schemes are all standalone modules
that you can combine to create new models

Minimalism

Each module should be kept short and simple

Easy extensibility

New modules are simple to add (as new classes and functions)
suitable for advanced research

Work with Python

Models are described in Python code, which is compact, easier to
debug, and allows for ease of extensibility

User friendliness

12



Installation and Dependencies

No worries

Google Colab

You may visit Keras Installation Page @ keras.io

13

https://keras.io/#installation


Keras Toolbox

What is in the toolbox ?

Models

Layers

Preprocessing

Metrics

Optimizers

Activations

Datasets

Constraints

Initializers

Loss (Objecitve) Function

and many more...

14



Model

Model

core data structure of Keras
a way to organize layers

Two types:

Sequential
Model class API

Sequential Model: a linear stack of layers

functional API: for defining complex models, such as models with
shared layers

15



Layers

Core Layers

Dense
Activation
Dropout
Flatten
many more ...

Convolutional Layers

Pooling Layers

Recurrent Layers

Your own Keras layers

and many more ...

16



Core Layers

Dense

fully connected NN layer: connection to all activations from previous
layer

hidden
layer i+1

hidden
layer i

17



Core Layers

Activation

Applies an activation function

detailed next

Dropout

Applies Dropout to the input

randomly setting a fraction p of input units to 0

prevent overfitting

Flatten

Flattens the input

many more

18



Activation Function: Sigmoid

Figure: Sigmoid Function

σ(x) =
1

1 + e−x
(1)

19



Activation Function: ReLU (rectified linear unit)

Figure: ReLU

f (x) = max(0, x) (2)

20



Activation Function: softmax

usually used on the output layer to turn the outputs into
probability-like values

Sigmoid: two class

softmax: multiclass

σ(z)i =
ezi

K∑
j=1

ezj
(3)

for i=1 to K and K is number of output units in output layer

21



Activation Function

linear

f (x) = x (4)

and many more...

22



Keras provides

Optimizer

the specific algorithm used to update weights while we train our
model

such as sgd (Stochastic gradient descent optimizer)

Objective function or loss function

used by the optimizer to navigate the space of weights

such as mse (mean squared error)

Metrics

used to judge the performance of your model

such as accuracy

23



API

Keras provides nice API

documentation

A tour of https://keras.io

24

https://keras.io


Building a Simple Deep Learning Network Using Keras

Steps

Import libraries and modules

Load image data

Pre-process data

Define model architecture

Compile model

Fit and evaluate Model

Improvements

25



Keras examples

Fully Connected Neural Network with MNIST dataset

26

https://github.com/nrjcs/swym/blob/master/swym_mnist_fcnn.ipynb


Sample Output

27



Improving Performance of Simple Network: additional
hidden layers

28



Improving Performance of Simple Network: additional
hidden layers

29



Improving Performance of Simple Network: introducing
dropout layer

30



Improving Performance of Simple Network: using different
optimizers

31



Improving Performance of Simple Network: training for
more number of epochs

32



Improving Performance of Simple Network: training for
more number of epochs

33



Improving Performance of Simple Network

other options to explore

additional hidden layers

dropout

different optimizers

more number of epochs

optimizer learning rate

number of internal hidden neurons

batch size

34



Part II: Convolution Neural Network

35



Let’s take a break from NN concepts

Convolution

among the most important operations in signal and image processing

it is the core concept behind the convolution neural network

convolution operation: (f ∗ g) ,
∫∞
−∞ f (τ)g(t − τ)dτ

produces a third function which represents how functions are
correlated

36



Convolution

the two functions in context of images are:

input image
kernel (filter/feature detector)

output is some feature

important for images due to the property of being stationary ⇒ same
feature detector for whole image

37



Convolution Example

Image Source: Internet

38



Convolution Example

Image Source: Internet

39



Convolution Example

Image Source: Internet

40



Convolution Example

Image Source: Internet

41



Convolution Example

Image Source: Internet

42



Convolution Example

Image Source: Internet

43



Convolution Example

Image Source: Internet

44



Convolution Example

Image Source: Internet

45



Convolution Example

Image Source: Internet

46



Convolution Example

Image Source: Internet

47



Convolution Example

Image Source: Internet

48



Switching back . . .

49



Issue with the Fully Connected Neural Network

number of parameters

a 32X32X3 image ⇒ 3072 (on input layer)
a 720X720X3 image ⇒ 15,55,200 (on input layer)
for large images, depending on number of hidden layers and the
neurons in each layer, for fully connected neural network, number of
parameters may be in millions
resource requirement
overfitting

50



Convolution Neural Network (ConvNet)

in many way similar to regular Neural Networks

neurons organized to form layers

weights to be learnt

biases

neurons receive inputs, performs a dot product followed by some
activation function

have a loss function . . .

in addition

assume that input are images ⇒ thus, many things follows

utilize spatial structure

regular network ⇒ image processed as a flat vector

number of parameters is input independent

51



ConvNet

well suited for classifying images

being applied to other problems as well such as text, speech, video . . .

network architecture more appropriate

layers of a ConvNet have neurons arranged in 3 dimensions: width,
height, depth

each layer transforms an input 3D volume to an output 3D volume

Image Source: http://cs231n.github.io/convolutional-networks/

52

http://cs231n.github.io/convolutional-networks/


Convolution Example

Recall convolution operation

Image Source: Internet

53



Padding

Issue

pixels on the side are ignored

in addition, padding helps in controlling image size

Image Source: Internet

54



Padding

No padding

Input: n X n

Filter size: f X f

Output: (n-f+1) X (n-f+1)

with padding

Input: n X n

Padding: p

Filter size: f X f

Output: (n+2p-f+1) X (n+2p-f+1)

Two common choices for padding

valid: no padding

same: output size is same as input

n+2p-f+1 = n ⇒ p = (f-1)/2
55



Stride

number of steps during convolution

Input: n X n

Padding: p

Stride: s

Filter size: f X f

Output: [(n+2p-f)/s+1] X [(n+2p-f)/s+1]

reduces the size of the image

56



Filters and Depth

Image Source: Internet

Image Source: Internet

57



ConvNet Architecture

Stack of layers: each layer transform the image volume (w,h,d) to an
output volume

Commonly used layers: Convolutional Layer, Pooling Layer,
Fully-Connected Layer, ReLU

a layer may (such as convolution layer) or may not (such as ReLU)
have parameters

a layer (such as convolution layer) may or may not (such as ReLU)
have additional hyper-parameters (number of filters, stride, zero
padding)

58



Convolutional Layer

core building block of a ConvNet

perform convolution with the three hyper-parameters: depth, stride
and padding

incoming example

59



Pooling

Image Source: Internet

Pooling Layer

reduces size ⇒ number of parameters and computation also decreases

helps avoiding overfitting

60



Findings

Smaller stride is better (1)

padding improves performance

average pooling

MNIST Example

61

https://github.com/nrjcs/swym/blob/master/swym_mnist_conv.ipynb


Additional

Working with own data

62

https://github.com/nrjcs/swym/blob/master/swym_own_data.ipynb


Constructing the Right Network

steps to follow to make an efficient image classifier?

lot of experimentation and testing to get the optimal structure and
parameters

A pre-trained model

63



Important Links

Links
1 Keras Official Documentation Page

2 Keras official github

3 Another GitHub Page

4 GitHub Page MNIST example

5 Keras Tutorial

6 An Example

7 Another Example

8 Deep Learning with Keras (Book)

64

https://keras.io/
https://github.com/keras-team/keras/tree/master/examples
https://github.com/fchollet/keras
https://github.com/wxs/keras-mnist-tutorial/blob/master/MNIST%20in%20Keras.ipynb
https://blog.keras.io/category/tutorials.html
https://machinelearningmastery.com/handwritten-digit-recognition-using-convolutional-neural-networks-python-keras/
https://elitedatascience.com/keras-tutorial-deep-learning-in-python
https://books.google.co.in/books?id=20EwDwAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false


The End

65


