CS551: Introduction to Deep Learning
 Mid Semester, Spring 2018
 IIT Patna

Attempt all questions. Do not write anything on the question paper.

Time: 2 Hrs
Full marks: 30

1. Prove or disprove: $\operatorname{tr}(A B)=\operatorname{tr}(A) \times \operatorname{tr}(B)$ where A and B are $n \times n$ matrices and tr denotes the trace.
2. A diagnostic test has a probability 0.95 of giving a positive result when applied to a person suffering from a certain disease, and a probability 0.10 of giving a (false) positive when applied to a non-sufferer. It is estimated that 0.5% of the population are sufferers. Suppose that the test is now administered to a person about whom we have no relevant information relating to the disease (apart from the fact that he/she comes from this population). Calculate the following probabilities: (a) that the test result will be positive; (b) that, given a positive result, the person is a sufferer; (c) that, given a negative result, the person is a non-sufferer; (d) that the person will be misclassified.
$(1+1+2+2)$
3. Consider a neural network where the last output layer uses softmax as activation function for some classification problem. Following is an observation on three training examples where o_{i} denotes the probability of each class from softmax and t_{i} denotes the labeled target for the examples. Find out mean cross entropy error for these three examples.

o_{1}	o_{2}	o_{3}	t_{1}	t_{2}	t_{3}
0.1	0.3	0.6	0	0	1
0.2	0.6	0.2	0	1	0
0.3	0.4	0.3	1	0	0

4. Consider maximal margin classifier for the following toy data set which has two features X_{1} and $X_{2} . Y$ is the target label . (a) Sketch the optimal separating hyperplane, and provide the equation for this hyperplane. [Equation for hyperplane may be derived logically or mathematically.] (b) On your sketch, indicate the margin for the maximal margin hyperplane. (c) Indicate the support vectors for the maximal margin classifier.

Sl. No.	1	2	3	4	5	6	7
X_{1}	3	2	4	1	2	4	4
X_{2}	4	2	4	4	1	3	1
Y	R	R	R	R	B	B	B

5. Given a set of m points $\left\{\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(m)}\right\}$ in \mathbb{R}^{n} and we want represent these points in k dimension where $k<n$. Propose a suitable methodology for it.
