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Recurrent Neural Network
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Introduction

e Recurrent neural networks are used for processing sequential data in
general
e Convolution neural network is specialized for image

e Capable of processing variable length input
e Shares parameters across different part of the model

e Example: "l went to IIT in 2017” or "In 2017, | went to IIT”
e For traditional machine learning models require to learn rules for different posi-
tions
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Image source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Computational graph

e Formal way to represent the computation

e Unfolding the graph results in sharing of parameters

e Consider a system s() = f(s(=") 0) where s') denotes the state of the
system

e Itis recurrent
e For finite number of steps, it can be unfolded
o Example: sC®) = £(s® 0) = f(f(s(",0),0)
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System with inputs

e A system will be represented as s(!) = f(s(t") x(t) )
e A state contains information of whole past sequence

e Usually state is indicated as hidden units such that h() =
f(h(tfﬂ? x(t) 0)

e While predicting, network learn h(*) as a kind of lossy summary of past
sequence upto t

e h(Y depends on (x(¥, x(t=" x(M)
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System with inputs (contd.)

e Unfolded recursion after t steps will be h(t) = g((x(1) x(t=1)  x(V) =
f(h(tfﬂ? x(t) 0)
e Unfolding process has some advantages

e Regardless of sequence length, learned model has same input size
e Uses the same transition function f with the same parameters at every time steps

e Can be trained with fewer examples
e Recurrent graph is succinct
e Unfolded graph illustrates the information flow
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Recurrent connection in hidden units
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Output to hidden unit connection
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Sequence processing
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Recurrent neural network

e Function computable by a Turing machine can be computed by such re-
current network of finite size

e tanh is usually chosen as activation function for hidden units

e Output can be considered as discrete, so o gives unnormalized log prob-
abilities

e Forward propagation begins with initial state h°

e SO we have,

e a) = b+ Wh("=") + Ux(®
. h(t) = tanh(a U)

e o) = ¢+ vh(®

o (V) = softmax(o"))

¢ Input and output have the same length
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Backpropagation through time

e The network will be unfolded and gradient will be back
propagated

e Number of stages need to be decided

e Issue in gradient computation v
e Vanishing gradients

e Exploding gradients
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Backpropagation through time

e The network will be unfolded and gradient will be back
propagated

e Number of stages need to be decided
e Issue in gradient computation v
e Vanishing gradients

e Exploding gradients
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Backpropagation through time

e Basic equations
h; Ux; + Wo(h;_1) Yt

Yt V¢(ht) v?




Backpropagation through time

e Basic equations
h: = Ux;+ Wo¢(h;_y)

Yt V¢(ht) v
e Gradient %
OE 65
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Backpropagation through time

e Basic equations
h: = Ux;+ Wo¢(h;_y)

Yt V¢(ht) v
e Gradient
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Backpropagation through time

e Basic equations
ht = Uxt—|— W¢(ht_1) Vi

Yt V¢(ht) v
° Gradient
OE (‘9Et ! v\?’%g
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Backpropagation through time

e Basic equations
ht = Uxt—|— W¢(ht_1) Vi

Yt V¢(ht) v
° Gradient %
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Backpropagation through time

e Basic equations
ht = Uxt—|— W¢(ht_1) Vi
Yi

o(hy) v
° Gradient
OE (9Et g OE; Oy, Ohy v?gg
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Backpropagation through time

e Basic equations
ht = Ux; + W¢(ht_1) Vi
Yt

o(he) V?
° Gradient
OE 8Et ! 0Et ayt ﬁht 8hk 65
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Backpropagation through time

e Basic equations
ht = Uxt—l— W¢(ht_1)
Yi

o(he) V?
° Gradient
OE 8Et ! 0Et ayt ﬁht 8hk 65

oW Z Z dy; Oh, Oh, OW u

e Now we have,
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Backpropagation through time

e Basic equations
h; = Ux; + Wo(ht )

Yyt = ¢(ht) v
° Gradient %
OE B 8Et ! 8Et 8yt 8ht 8hk
(9W — Z Z 8yt (9ht ahk oW %
e Now we have,
oh, +r Oh
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Backpropagation through time

e Basic equations
h; = Ux; + Wo(ht )

Yyt = ¢(ht) v
° Gradient %
OE B 8Et ! 8Et 8yt 8ht 8hk
(9W — Z Z 8yt (9ht ahk oW %
e Now we have,
Ohe  v1 Oh  TT e o
T = [ [ w'diag[¢'(hi_1)]

i=k+1 n i=k-+1
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Backpropagation through time

e Issues in gradient
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output

output gate

forget gate
input & | put gate |

Xt h;_
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LSTM

e Mathematical relation
it = 0(O0xiX¢ + Opihe_1 + by;)
fe = o(Oxxt + Opchy_1 + by)
0t = 0(OxoXt + Onohi—1 + by)
gt = tanh(OygX; + Opghi_1 + bg)
¢ =Fft O +it © gt
h; = o; ® tanh(c)
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