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Convolutional Neural Network
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Introduction

e Specialized neural network for processing data that has grid like topol-
ogy
e Time series data (one dimensional)
¢ Image (two dimensional)

e Found to be reasonably suitable for certain class of problems eg. com-
puter vision

o Instead of matrix multiplication, it uses convolution in at least one of
the layers
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Convolution operation

e Consider the scenario of locating a spaceship with a laser sensor
e Suppose, the sensor is noisy
e Accurate estimation is not possible
e Weighted average of location can provide a good estimate s(t)
[ x(a)w(t — a)da

e x(a) — Location at age a by the sensor, t — current time, w — weight
e This is known as convolution

e Usually denoted as s(t) = (x = w)(t)

¢ In neural network terminology x is input, w is kernel and output is re-
ferred as feature map
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Convolution operation (contd)

e Discrete convolution can be represented as

o0

s(t) = (xxw)(t) = > x(a)w(t — a)

a=o0

e In neural network input is multidimensional and so is kernel
e These will be referred as tensor

e Two dimensional convolution can be defined as

s(ij) = (1% K)(i,)) = > _I(m,n)k(i —m,j—n) => " I(i — m,j — n)k(m,n)

e Commutative

¢ In many neural network, it implements as cross-correlation

s(i,j) = (1+ K)(i.)) = Y > (i +m,j+n)k(m,n)

e No kernel flip is possible m
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2D convolution

a b c d aw+bx || [bw+cx | |cw+dX
Wil X tey+Hz || |+fy+gz | +gy+hz

e f g h
y z ew+x | | fw+gx | |gw+hx
+iy+jz | |HY+KZ | |+ky+lz
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2D Convolution

Grid size: 7 x 7
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2D Convolution

Grid size: 7 x 7

Filter size: 3 x 3
Stride: 1
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2D Convolution
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2D Convolution

Grid size: 7 x 7

Filter size: 3 x 3
Stride: 1
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2D Convolution

Grid size: 7 x 7

Filter size: 3 x 3
Stride: 1

Output size: 5x 5
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2D convolution with stride

Grid size: 7 x 7
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2D convolution with stride

Grid size: 7 x 7

Filter size: 3 x 3
Stride: 2

IIT Patna 8



2D convolution with stride

Grid size: 7 x 7

Filter size: 3 x 3
Stride: 2
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2D convolution with stride

Grid size: 7 x 7

Filter size: 3 x 3
Stride: 2
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2D convolution with stride

Grid size: 7 x 7

Filter size: 3 x 3
Stride: 2

Output size: 3 x 3
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2D convolution with stride

Grid size: 7 x 7

Filter size: 3 x 3
Stride: 2

Output size: 3 x 3

Output size: (N—F)/S+1
N - input size, F - Filter size,
S - Stride
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Convolution operation

32

32
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Convolution operation

32 28

32 28
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Convolution operation

32

32
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Convolution example

32 28 24
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8 5x5x3 10 5x5x8
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IIT Patna 10



Edge detection

Image source: Deep Learning Book
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Advantages

e Convolution can exploit the following properties

e Sparse interaction (Also known as sparse connectivity or sparse weights)
e Parameter sharing
e Equivariant representation
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Sparse interaction

e Traditional neural network layers use matrix multiplication to describe
how outputs and inputs are related
e Convolution uses a smaller kernel

e Significant reduction in number of parameters
e Computing output require few comparison

e For example, if there is m inputs and n outputs, traditional neural net-
work will require m x n parameters

o If each of the output is connected to at most k units, the number of
parameters will be k x n
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Receptive field




Receptive field




Parameter sharing

e Same parameters are used for more than one function model
¢ In tradition neural network, weight is used only once

e Each member of kernel is used at every position of the inputs
e As k << m, the number of parameters will reduced significantly
e Also, require less memory
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Equivariance

¢ If the input changes, the output changes in the same way
e Specifically, a function f(x) is equivariant to function g if f(g(x)) =

g(f(x))
e Example, g is a linear translation
e Let B be a function giving image brightness at some integer coordinates and g be
a function mapping from one image to another image function such that I’ = g(/)
with I'(x,y) = I(x — 1, y)
e There are cases sharing of parameters across the entire image is not a
good idea
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e Typical convolutional network has three stages

e Convolution — several convolution to produce linear activation
e Detector stage — linear activation runs through the non-linear unit such as RelLU
e Pooling — Output is updated with a summary of statistics of nearby inputs

e Maxpooling reports the maximum output within a rectangular neighbourhood
e Average of rectangular neighbourhood
e Weighted average using central pixel

e Pooling helps to make representation invariant to small translation
e Feature is more important than where it is present

e Pooling helps in case of variable size of inputs
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Typical CNN

‘ Input ‘ ‘ Input ‘
|
, '
Convolution stage Convolution layer
Affine transformation .~ Affine transformation
Pz ¢
g
Detector stage 2 Detector layer
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ReLU S ReLU
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‘ Pooling stage ‘ ‘ Pooling layer ‘
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‘ Next layer ‘ ‘ Next layer ‘
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Invariance of maxpooling
Pooling stage

@ @ @ @ Detector stage

Pooling stage

@ @ @ @ Detector stage
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Learned invariances

Large response Large response

in pooling unit in pooling unit

Large Large

response response
in detector

unit 3

LIS|ls] |bH& ]S

in detector
unit 1

Image source: Deep Learning Book
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Pooling with downsampling




Strided convolution
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Strided convolution (contd)

Down-sampling

Convolution
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Zero padding
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Local convolution
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Recurrent convolution network
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AlexNet
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Image source: https://worksheets.codalab.org
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AlexNet

e Architecture

e INPUT - 227 x 227 x 3 Ty CONV3- 3843 x 3filter, stride 1, pad1,

e CONV1-96 11 x 11filters at stride 4, pad Output: 13 x 13 x 384
0, Output: 55 x 55 x 96 e CONV4 - 384 3 x 3filter, stride 1, pad 1,
e MAX POOL1 - 3 x 3 filter, stride 2 Out- Output: 13 x 13 x 384
put: 27 x 27 x 96 e CONV5 - 256 3 x 3filter, stride 1, pad 1,
e NORMI1 - Output: 27 x 27 x 96 Output: 013 x 13 x 256
e CONV2-2565 x 5filters at stride 1, pad e MAX POOL3 - 3 x 3 filter, stride 2, Out-
2, Output: 27 x 27 x 256 put: 6 x 6 x 256
e MAX POOL2 - 3 x 3filter, stride 2 Out- e FC6 - 4096 Neurons
put: 13 x 13 x 256 e FC7 - 4096 Neurons

e NORM2-013 x 13 x 256 FC8 - 1000 Neurons

Image source: https://worksheets.codalab.org
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Image source: internet
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Image source: http://joelouismarino.github.io
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1x1
convolutions

3x3
Previous convolutions

Filter
concatenation

Layer

5x5
convolutions

3x3
max pooling
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Comparison of CNN architecture

Size  Top-1/top-5

Model (M) error (%) # layers  Model description

AlexNet 238  41.00/18.00 8 5 conv + 3 fc layers

VGG-16 540  28.07/9.33 16 13 conv + 3 fc layers
VGG-19 560  27.30/9.00 19 16 conv + 3 fc layers
GoogleNet 40 29.81/10.04 22 21 conv + 1 fc layers
ResNet-50 100  22.85/6.71 50 49 conv + 1 fc layers
ResNet-152 235 21.43/3.57 152 151 conv + 1 fc layers

Image source: internet
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Guided backpropagation

Backprop Guided Backprop

Image source: internet
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Guided backpropagation

guided backpropagation correspondmﬂ image crops
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guided backpropagation

Image source: internet
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Fantasy image

cup dalmatian goose

Image source: internet
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