Introduction to Deep Learning

Ariiit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Convolutional Neural Network

Introduction

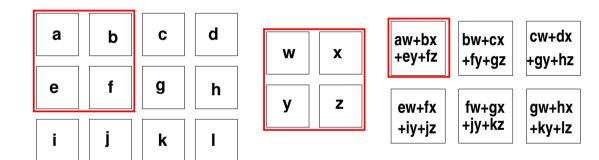
- Specialized neural network for processing data that has grid like topology
 - Time series data (one dimensional)
 - Image (two dimensional)
- Found to be reasonably suitable for certain class of problems eg. computer vision
- Instead of matrix multiplication, it uses convolution in at least one of the layers

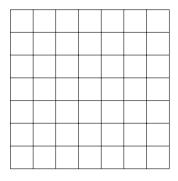
- Consider the scenario of locating a spaceship with a laser sensor
- Suppose, the sensor is noisy
 - Accurate estimation is not possible
- Weighted average of location can provide a good estimate $s(t) = \int x(a)w(t-a)da$
 - x(a) Location at age a by the sensor, t current time, w weight
 - This is known as convolution
 - Usually denoted as s(t) = (x * w)(t)
- In neural network terminology x is input, w is kernel and output is referred as feature map

Convolution operation (contd)

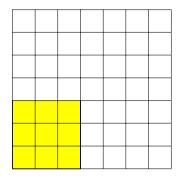
Discrete convolution can be represented as

$$s(t) = (x * w)(t) = \sum_{a=\infty}^{\infty} x(a)w(t-a)$$

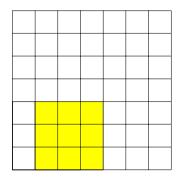

- In neural network input is multidimensional and so is kernel
 - These will be referred as tensor
- Two dimensional convolution can be defined as


$$s(i,j) = (I * K)(i,j) = \sum_{m,n} I(m,n)k(i-m,j-n) = \sum_{m,n} I(i-m,j-n)k(m,n)$$

- Commutative
- In many neural network, it implements as cross-correlation

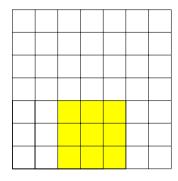

$$s(i,j) = (I*K)(i,j) = \sum \sum I(i+m,j+n)k(m,n)$$

• No kernel flip is possible


Grid size: 7×7

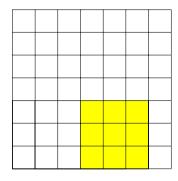
Grid size: 7×7

Filter size: 3×3


Stride: 1

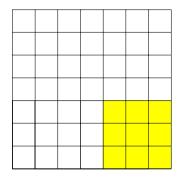
Grid size: 7×7

Filter size: 3×3


Stride: 1

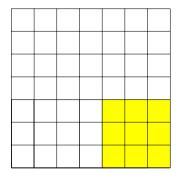
Grid size: 7×7

Filter size: 3×3


Stride: 1

Grid size: 7×7

Filter size: 3×3

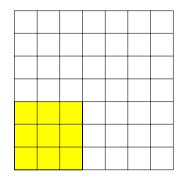

Stride: 1

Grid size: 7×7

Filter size: 3×3

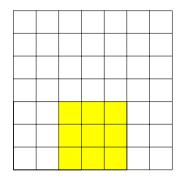
Stride: 1

Grid size: 7×7


Filter size: 3×3

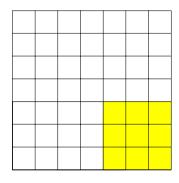
Stride: 1

Output size: 5×5


Grid size: 7×7

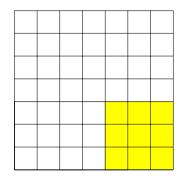
Grid size: 7×7

Filter size: 3×3


Stride: 2

Grid size: 7×7

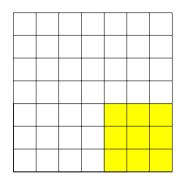
Filter size: 3×3


Stride: 2

Grid size: 7×7

Filter size: 3×3

Stride: 2



Grid size: 7×7

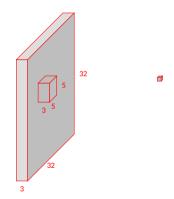
Filter size: 3×3

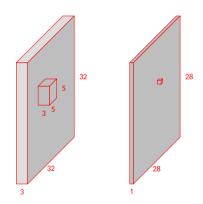
Stride: 2

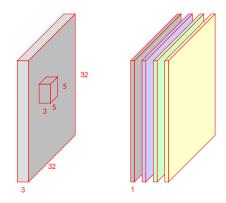
Output size: 3×3

Grid size: 7×7

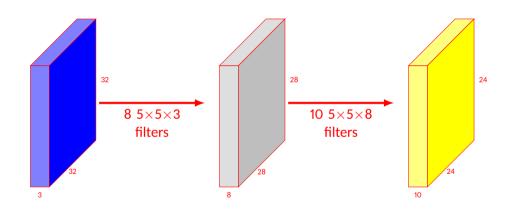
Filter size: 3×3

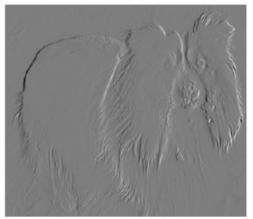

Stride: 2


Output size: 3×3


Output size: (N - F)/S + 1

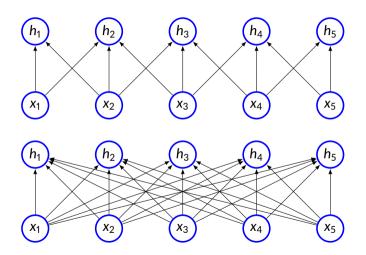
N - input size, F - Filter size,

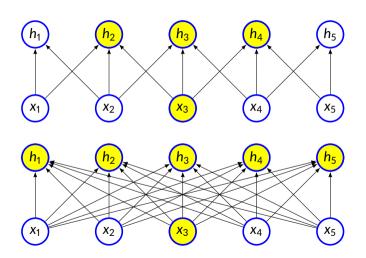

S - Stride

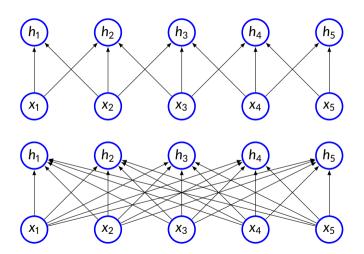


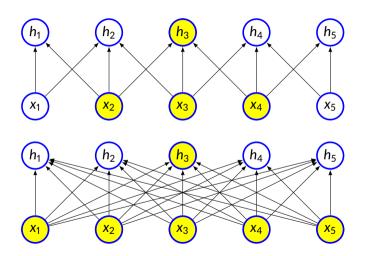
Convolution example

Edge detection

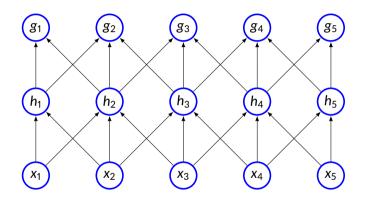


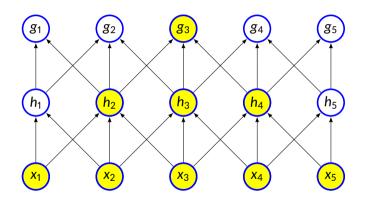

Advantages


- Convolution can exploit the following properties
 - Sparse interaction (Also known as sparse connectivity or sparse weights)
 - Parameter sharing
 - Equivariant representation


Sparse interaction

- Traditional neural network layers use matrix multiplication to describe how outputs and inputs are related
- Convolution uses a smaller kernel
 - Significant reduction in number of parameters
 - Computing output require few comparison
- For example, if there is m inputs and n outputs, traditional neural network will require $m \times n$ parameters
- If each of the output is connected to at most k units, the number of parameters will be $k \times n$





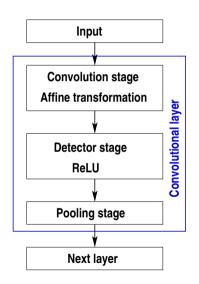
Receptive field

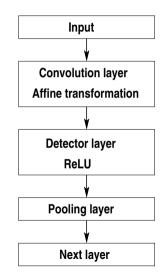
Receptive field

Parameter sharing

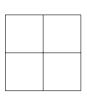
- Same parameters are used for more than one function model
- In tradition neural network, weight is used only once
- Each member of kernel is used at every position of the inputs
- As $k \ll m$, the number of parameters will reduced significantly

Also, require less memory

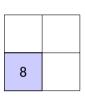

Equivariance

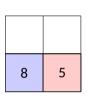

- If the input changes, the output changes in the same way
- Specifically, a function f(x) is equivariant to function g if f(g(x)) = g(f(x))
 - Example, g is a linear translation
 - Let B be a function giving image brightness at some integer coordinates and g be a function mapping from one image to another image function such that l' = g(l) with l'(x, y) = l(x 1, y)
- There are cases sharing of parameters across the entire image is not a good idea

Pooling


- Typical convolutional network has three stages
 - Convolution several convolution to produce linear activation
 - Detector stage linear activation runs through the non-linear unit such as ReLU
 - Pooling Output is updated with a summary of statistics of nearby inputs
 - Maxpooling reports the maximum output within a rectangular neighbourhood
 - Average of rectangular neighbourhood
 - Weighted average using central pixel
- Pooling helps to make representation invariant to small translation
 - Feature is more important than where it is present
- Pooling helps in case of variable size of inputs

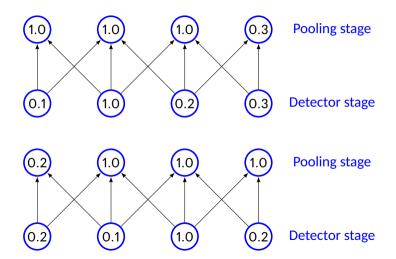
Typical CNN

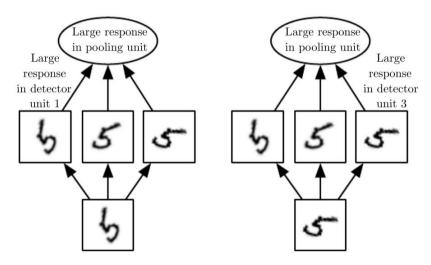



0	4	7	8
9	2	4	5
6	7	3	4
8	2	1	5

О	4	7	8
9	2	4	5
6	7	3	4
8	2	1	5

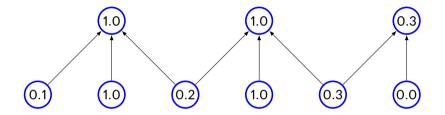
О	4	7	8
9	2	4	5
6	7	3	4
8	2	1	5

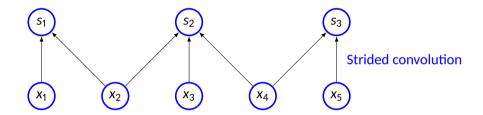

0	4	7	8
9	2	4	5
6	7	3	4
8	2	1	5


0	4	7	8
9	2	4	5
6	7	3	4
8	2	1	5

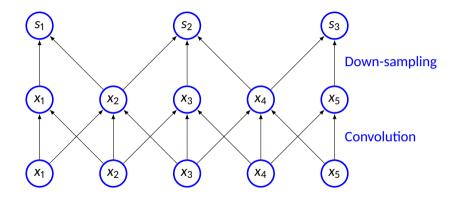
9	8
8	5

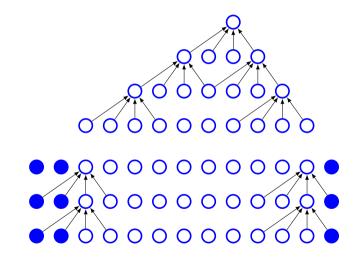
Invariance of maxpooling

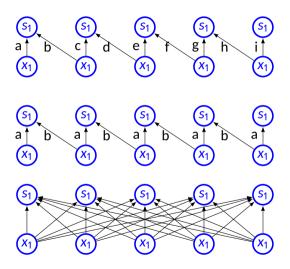

Learned invariances

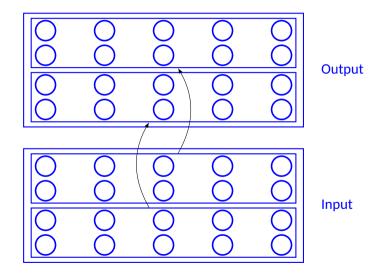

IIT Patna

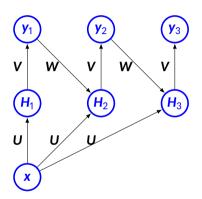
23

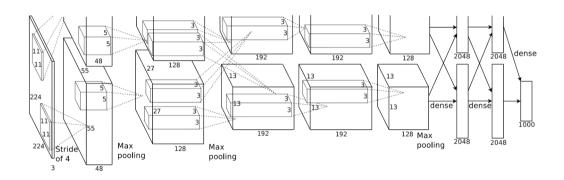

Pooling with downsampling


Strided convolution


Strided convolution (contd)

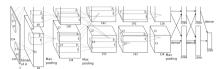

Zero padding


Connections


Local convolution

Recurrent convolution network

AlexNet


IIT Patna

31

AlexNet

Architecture

- INPUT $227 \times 227 \times 3$
- CONV1 96 11 × 11 filters at stride 4, pad 0. Output: 55 × 55 × 96
- MAX POOL1 3 × 3 filter, stride 2 Output: 27 × 27 × 96
- **NORM1 Output:** 27 × 27 × 96
- CONV2 256 5 × 5 filters at stride 1, pad
 2, Output: 27 × 27 × 256
- MAX POOL2 3×3 filter, stride 2 Output: $13 \times 13 \times 256$
- NORM2 $0.13 \times 13 \times 256$

- CONV3 384 3 × 3 filter, stride 1, pad 1,
 Output: 13 × 13 × 384
- CONV4 384 3×3 filter, stride 1, pad 1, Output: $13 \times 13 \times 384$
- CONV5 256 3×3 filter, stride 1, pad 1, Output: $O 13 \times 13 \times 256$
- MAX POOL3 3 × 3 filter, stride 2, Output: 6 × 6 × 256
- FC6 4096 Neurons
- FC7 4096 Neurons
- FC8 1000 Neurons

VggNet

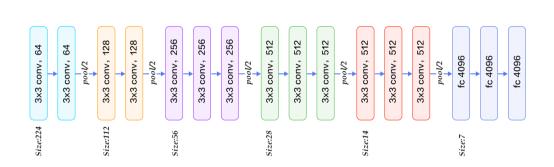
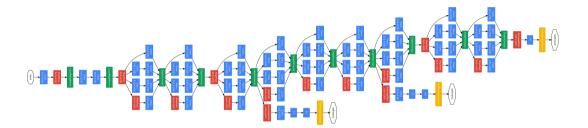
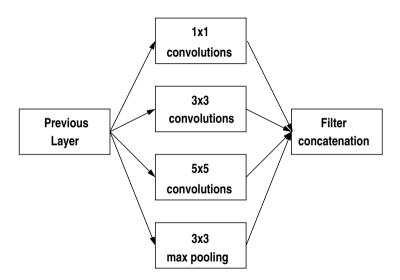
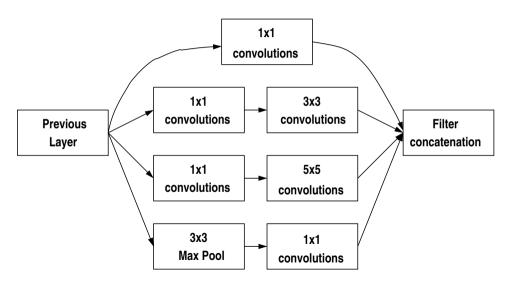
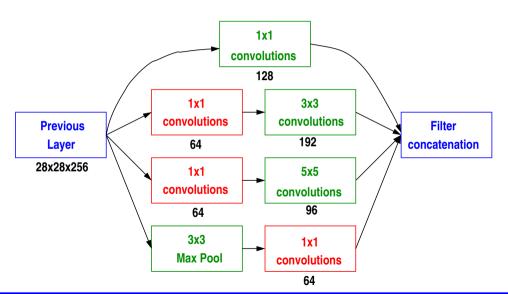



Image source: internet


IIT Patna

33


GoogleNet


Naive inception

Inception

Inception

ResNet

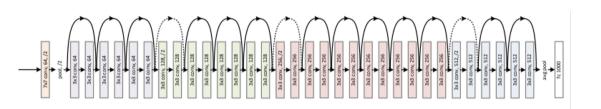
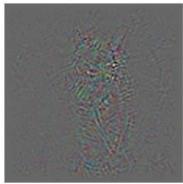



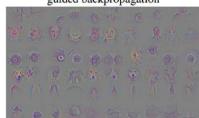
Image source: internet

Comparison of CNN architecture

Model	Size (M)	Top-1/top-5 error (%)	# layers	Model description
AlexNet	238	41.00/18.00	8	5 conv + 3 fc layers
VGG-16	540	28.07/9.33	16	13 conv + 3 fc layers
VGG-19	560	27.30/9.00	19	16 conv + 3 fc layers
GoogleNet	40	29.81/10.04	22	21 conv + 1 fc layers
ResNet-50	100	22.85/6.71	50	49 conv + 1 fc layers
ResNet-152	235	21.43/3.57	152	151 conv + 1 fc layers

Guided backpropagation

Backprop


Guided Backprop

Guided backpropagation

guided backpropagation

guided backpropagation

corresponding image crops

corresponding image crops

41

Fantasy image

cup

dalmatian