Introduction to Deep Learning

Ariiit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Optimization for Training Deep Models

Minimization of cost function

Approximate minimization

x

Curvature

Problem of optimization

- Differs from traditional pure optimization problem
- Performance of a task is optimized indirectly
- We optimize $J(\theta) = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \hat{p}_{\mathsf{data}}} L(f(\mathbf{x}, \theta), \mathbf{y})$ where \hat{p} is the empirical distribution
- We would like to optimize $J^*(\theta) = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim p_{\mathsf{data}}} L(f(\mathbf{x}, \theta), \mathbf{y})$ where p is the data generating distribution
 - Also known as risk
- We hope minimizing J will minimize J*

Empirical risk minimization

- Target is to reduce risk
- If the true distribution is known, risk minimization is an optimization problem
- When $p_{data}(x, y)$ is unknown, it becomes machine learning problem
- Simplest way to convert machine learning problem to optimization problem is to minimize expected cost of training set

Empirical risk minimization (contd.)

• We minimize empirical risk

$$\mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\hat{p}_{\mathsf{data}}}[\mathsf{L}(f(\mathbf{x},\boldsymbol{\theta}),\mathbf{y})] = \frac{1}{m}\sum_{i}\mathsf{L}(f(\mathbf{x}^{(i)},\boldsymbol{\theta}),\mathbf{y}^{(i)})$$

- We can hope empirical risk minimizes the risk as well
 - Empirical risk minimization is prone to overfitting
 - Gradient based solution approach may lead to problem with 0-1 loss cost function

Surrogate loss function

- Loss function may not be optimized efficiently
 - Exact minimization of 0-1 loss is typically intractable
- Surrogate loss function is used
 - Proxy function for the actual loss function
 - Negative log likelihood of correct class used as surrogate function
- There are cases when surrogate loss function results in better learning
 - 0-1 loss of test set often continues to decrease for a long time after training set 0-1 loss has reached to 0
- A training algorithm does not halt at local minima usually
 - Tries to minimize surrogate loss function but halts when validation loss starts to increase

• Training function can halt when surrogate function has huge derivative

Batch

- Objective function usually decomposes as a sum over training example
- Typically in machine learning update of parameters is done based on an expected value of the cost function estimated using only a subset of the terms of full cost function
- Maximum likelihood problem $\theta_{ML} = \arg \max_{\theta} \sum_{i=1} \log p_{model}(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \boldsymbol{\theta})$

• Maximizing this sum is equivalent to maximizing the expectation over empirical distribution $J(\theta) = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \hat{p}_{\mathsf{data}}} \log p_{\mathsf{model}}(\mathbf{x}, \mathbf{y}, \theta)$

Batch (contd.)

- Common gradient is given by $\nabla_{\theta} = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \hat{p}_{\mathsf{data}}} \nabla_{\theta} \log p_{\mathsf{model}}(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta})$
 - It becomes expensive as we need to compute for all examples
 - Random sample is chosen, then average of the same is taken
 - Standard error in mean is $\frac{\sigma}{\sqrt{n}}$ where σ is the true standard deviation
 - Redundancy in training examples is an issue
- Optimization algorithm that uses entire training set is called batch of deterministic gradient descent
- Optimization algorithm that uses single example at a time is known as stochastic gradient descent or online method

Minibatch

- Larger batch provides more accurate estimate of the gradient but with lesser than linear returns
- Multicore architecture are usually underutilized by small batches
- If all examples are to be processed parallely then the amount of memory scales with batch size
- Sometime, better run time is observed with specific size of the array
- Small batch can add regularization effect due to noise they add in learning process

ullet Methods that update the parameters based on ${f g}$ only are usually robust and can handle small batch size \sim 100

Minibatch (contd.)

- With Hessian matrix batch size becomes \sim 10,000 (Require to minimize $H^{-1}g$)
- SGD minimizes generalization error on minibatches drawn from a stream of data

Issues in optimization

- Ill conditioning
- Local minima
- Plateaus
- Saddle points
- Flat region

- Cliffs
- Exploding gradients
- Vanishing gradients
- Long term dependencies
- Inexact gradients

Ill conditioning

- Ill conditioning of Hessian matrix
 - Common problem in most of the numerical optimization
 - The ratio of smallest to largest eigen value determines the condition number
 - We have the following

$$f(\mathbf{x}) = f(\mathbf{x}^{(0)}) + (\mathbf{x} - \mathbf{x}^{(0)})^{\mathsf{T}} \mathbf{g} + \frac{1}{2} (\mathbf{x} - \mathbf{x}^{(0)})^{\mathsf{T}} \mathbf{H} (\mathbf{x} - \mathbf{x}^{(0)})$$
$$f(\mathbf{x} - \epsilon \mathbf{g}) = f(\mathbf{x}^{(0)}) - \epsilon \mathbf{g}^{\mathsf{T}} \mathbf{g} + \frac{1}{2} \epsilon \mathbf{g}^{\mathsf{T}} \mathbf{H} \epsilon \mathbf{g}$$

- It becomes a problem when $\frac{1}{2}\epsilon^2 \mathbf{g}^\mathsf{T} \mathbf{H} \mathbf{g} \epsilon \mathbf{g}^\mathsf{T} \mathbf{g} > 0$
- In many cases gradient norm does not shrink much during learning and g^THg grows more rapidly

• Makes the learning process slow

Local minima

- For convex optimization problem local minima is often acceptable
- For nonconvex function like neural network many local minima are possible

• This is not a major problem

Local minima (contd.)

- Neural network and any models with multiple equivalently parameterized latent variables results in local minima
 - This is due to model identifiability
 - Model is identifiable if sufficiently large training set can rule out all but one setting of model parameters
 - Model with latent variables are often not identifiable as exchanging of two variables does not change the model
 - m layers with n unit each can result in $(n!)^m$ arrangements
 - This non-identifiability is known as weight space symmetry
 - Neural network has other non-identifiability scenario
 - ReLU or MaxOut weight is scaled by α and output is scaled by $\frac{1}{\alpha}$

Local minima (contd.)

- Model identifiability issues mean that there can be uncountably infinite number of local minima
- Non-identifiability results in local minima and are equivalent to each other in cost function
- Local minima can be problematic if they have high cost compared to global minima

Other issues

- Saddle points
 - Gradient is 0 but some have higher and some have lower value around the point
 - Hessian matrix has both positive and negative eigen value
- In high dimension local minima are rare, saddle points are common
 - For a function $f: \mathbb{R}^n \to \mathbb{R}$, the expected ratio of number of saddle points to local minima grows exponentially with n
 - Eigenvalue of Hessian matrix
- Cliffs uses gradient clipping
- Long term dependency mostly applicable for RNN
 - $\mathbf{w}^t = \mathbf{V} \mathbf{diag}(\boldsymbol{\lambda})^t \mathbf{V}^{-1}$
 - vanishing and exploding gradient
- Inexact gradients bias in estimation of gradient

Stochastic gradient descent

- Inputs Learning rate (ϵ_k) , weight parameters (θ)
- Algorithm for SGD:

while stopping criteria not met

Sample a minibatch $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}\}$ with labels $\{\mathbf{y}^{(i)}\}$

Estimate of gradient $\hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(\mathbf{x}^{(i)}, \theta), \mathbf{y}^{(i)})$

Update parameters $\theta = \theta - \epsilon_k \hat{g}$

end while

Stochastic gradient descent

- Learning rate is a crucial parameter
- Learning rate ϵ_k is used in the kth iteration
- Gradient does not vanishes even when we reach minima as minibatch can introduce noise
- True gradient becomes small and then 0 when batch gradient descent is used
- Sufficient condition on learning rate for convergence of SGD
 - $\sum_{k=1}^{\infty} \epsilon_k = \infty$, $\sum_{k=1}^{\infty} \epsilon_k^2 < \infty$
- Common way is to decay the learning rate $\epsilon_k = (1 \alpha)\epsilon_0 + \alpha\epsilon_\tau$ with $\alpha = \frac{k}{\tau}$

Stochastic gradient descent

- Choosing learning rate is an art than science!
 - Typically ϵ_{τ} is 1% of ϵ_{0}
- SGD usually performs well for most of the cases
- For large task set SGD may converge within the fixed tolerance of final error before it has processed all training examples

Momentum

- SGD is the most popular. However, learning may be slow sometime
- Idea is to accelerate learning especially in high curvature, small but consistent gradients
- Accumulates an exponential decaying moving average of past gradients and continue to move in that direction
- Introduces a parameter v that play the role of velocity
 - The velocity is set to an exponentially decaying average of negative gradients
- Update is given by

$$\mathbf{v} = \alpha \mathbf{v} - \epsilon \nabla_{\theta} \left(\frac{1}{m} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}, \theta), \mathbf{y}^{(i)}) \right)$$

• α — hyperparameter, denotes the decay rate

Momentum

SGD with momentum

- Inputs Learning rate (ϵ) , weight parameters (θ) , momentum parameter (α) , initial velocity (\mathbf{v})
- Algorithm:

while stopping criteria not met

Sample a minibatch from set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ with labels $\{y^{(i)}\}$

Estimate of gradient:
$$\mathbf{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(\mathbf{x}^{(i)}, \boldsymbol{\theta}), \mathbf{y}^{(i)})$$

Update of velocity: $\mathbf{v} = \alpha \mathbf{v} - \epsilon \mathbf{g}$

Update parameters: $\theta = \theta + v$

end while

Momentum

- The step size depends on how large and how aligned a sequence gradients are
- Largest when many successive gradients are in same direction
- If it observes g always, then it will accelerate in -g with terminal velocity $\frac{\epsilon |g|}{1-\alpha}$
- Typical values for α is 0.5, 0.9, 0.99. However this parameter can be adapted.

Nesternov momentum

- Inputs Learning rate (ϵ) , weight parameters (θ) , momentum parameter (α) , initial velocity (\mathbf{v})
- Algorithm:

```
while stopping criteria not met
```

Sample a minibatch from set $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}\}$ with labels $\{\mathbf{y}^{(i)}\}$

Interim update: $\tilde{\boldsymbol{\theta}} = \boldsymbol{\theta} + \alpha \mathbf{v}$

Gradient at interim point: $\mathbf{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(\mathbf{x}^{(i)}, \tilde{\theta}), \mathbf{y}^{(i)})$

Update of velocity: $\mathbf{v} = \alpha \mathbf{v} - \epsilon \mathbf{g}$

Update parameters: $\theta = \theta + v$

end while

Parameter initialization

- Training algorithms are iterative in nature
- Require to specify initial point
- Training deep model is difficult task and affected by initial choice
 - Convergence
 - Computation time
 - Numerical instability

• Need to break symmetry while initializing the parameters

Adaptive learning rate

- Learning rate can affect the performance of the model
- Cost may be sensitive in one direction and insensitive in the other directions
- If partial derivative of loss with respect to model remains the same sign then the learning rate should decrease

Applicable for full batch optimization

AdaGrad

- Adapts the learning rate of all parameters by scaling them inversely proportional to the square root of the sum of all historical squared values of the gradient
 - Parameters with largest partial derivative of the loss will have rapid decrease in learning rate and vice-versa
 - Net effect is greater progress
- It performs well on some models

Steps for AdaGrad

- Inputs Global learning rate (ϵ), weight parameters (θ), small constant (δ), gradient accumulation (r)
- Algorithm:

while stopping criteria not met

Sample a minibatch from set $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}\}$ with labels $\{\mathbf{y}^{(i)}\}$

Gradient: $\mathbf{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(\mathbf{x}^{(i)}, \theta), \mathbf{y}^{(i)})$

Accumulated squared gradient: $\mathbf{r} = \mathbf{r} + \mathbf{g} \odot \mathbf{g}$

Update: $\Delta \theta = -\frac{\epsilon}{\delta + \sqrt{r}} \odot \mathbf{g}$

Apply update: $\theta = \theta + \Delta \theta$

end while

RMSProp

- Gradient is accumulated using an exponentially weighted moving average
 - Usually, AdaGrad converges rapidly in case of convex function
- AdaGrad reduces the learning rate based on entire history
- RMSProp tries to discard history from extreme past

This can be combined with momentum

Steps for RMSProp

- Inputs Global learning rate (ϵ), weight parameters (θ), small constant (δ), gradient accumulation (r), decay rate (ρ)
- Algorithm:

while stopping criteria not met

Sample a minibatch from set $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}\}$ with labels $\{\mathbf{y}^{(i)}\}$

Gradient:
$$\mathbf{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(\mathbf{x}^{(i)}, \theta), \mathbf{y}^{(i)})$$

Accumulated squared gradient: $\mathbf{r} = \rho \mathbf{r} + (1 - \rho) \mathbf{g} \odot \mathbf{g}$

Update:
$$\Delta \theta = -\frac{\epsilon}{\sqrt{\delta + \mathbf{r}}} \odot \mathbf{g}$$

Apply update: $\theta = \theta + \Delta \theta$

end while

Steps for RMSProp with Nesternov

- Inputs Global learning rate (ϵ), weight parameters (θ), small constant (δ), gradient accumulation (r), decay rate (ρ), initial velocity (v), momentum coefficient (α)
- Algorithm:

```
while stopping criteria not met Sample a minibatch from set \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}\} with labels \{\mathbf{y}^{(i)}\} Interim update: \tilde{\boldsymbol{\theta}} = \boldsymbol{\theta} + \alpha \mathbf{v}
```

Gradient: $\mathbf{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \mathsf{L}(f(\mathbf{x}^{(i)}, \tilde{\boldsymbol{\theta}}), \mathbf{y}^{(i)})$

Accumulated squared gradient: $\mathbf{r} = \rho \mathbf{r} + (1 - \rho) \mathbf{g} \odot \mathbf{g}$

Update of velocity: $\mathbf{v} = \alpha \mathbf{v} - \frac{\epsilon}{\sqrt{\mathbf{r}}} \odot \mathbf{g}$

Apply update: $\theta = \theta + \mathbf{v}$

end while

Approximate 2nd order method

- Taking 2nd order term to train deep neural network
- The cost function at θ near the point θ_0 is given by

$$J(oldsymbol{ heta}) pprox J(oldsymbol{ heta}_0) + (oldsymbol{ heta} - oldsymbol{ heta}_0)^\mathsf{T}
abla_{oldsymbol{ heta}} J(oldsymbol{ heta}_0) + rac{1}{2} (oldsymbol{ heta} - oldsymbol{ heta}_0)^\mathsf{T} \mathbf{H} (oldsymbol{ heta} - oldsymbol{ heta}_0)$$

- Solution for critical point provides $\theta^* = \theta_0 H^{-1} \nabla_{\theta} J(\theta_0)$
 - If the function is quadratic then it jumps to minimum
 - If the surface is not quadratic but **H** is positive definite then this approach is also applicable

• This approach is known as Newton's method

Steps for Newton's method

- Inputs Initial parameters (θ₀)
- Algorithm:

while stopping criteria not met

Sample a minibatch from set $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}\}$ with labels $\{\mathbf{y}^{(i)}\}$

Compute gradient: $\mathbf{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \mathsf{L}(f(\mathbf{x}^{(i)}, \boldsymbol{\theta}), \mathbf{y}^{(i)})$

Compute Hessian: $H = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta}^{2} L(f(\mathbf{x}^{(i)}, \theta), \mathbf{y}^{(i)})$

Compute inverse Hessian: H^{-1}

Compute update: $\Delta \theta = -H^{-1}g$

Apply update: $\theta = \theta + \Delta \theta$

end while

Batch normalization

- Reduces internal covariate shift
- Issues with deep neural network
 - Vanishing gradients
 - Use smaller learning rate
 - Use proper initialization
 - Use ReLU or MaxOut which does not saturate

• This approach provides inputs that has zero mean and unit variance to every layer of input in neural network

Batch normalization transformation

- Applying to activation x over a mini-batch
- Input values of x over a minibatch $\mathcal{B} = \{x_{1...m}\}$, parameters to be learned γ, β
- Output $-\{y_i = BN_{\gamma,\beta}(x_i)\}$
 - Minibatch mean: $\mu_{\mathcal{B}} = \frac{1}{m} \sum_{i=1}^{m} x_i$
 - Minibatch variance: $\sigma_{\mathcal{B}}^2 = \frac{1}{m} \sum_{i=1}^m (x_i \mu_{\mathcal{B}})^2$
 - Normalize: $\hat{\mathbf{x}}_i = \frac{\mathbf{x}_i \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$
 - Scale and shift: $y_i = \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$

Computational graph for BN

Back-propagation for BN (9)

Back-propagation for BN (8)

Back-propagation for BN (7)

Back-propagation for BN (6)

Back-propagation for BN (5)

Back-propagation for BN (4)

Back-propagation for BN (3)

Back-propagation for BN (2)

Back-propagation for BN (1)

Back-propagation for BN (0)

Training & inference using batch-norm

- Input Network N with trainable parameters θ , subset of activations $\{x^{(k)}\}_{k=1}^K$, Output Batch-normalized network for inference N_{BN}^{inf}
- Steps:
 - Training BN network: $N_{BN}^{tr} = N$
 - for k = 1, ..., K
 - Add transformation $y^{(k)} = BN_{\gamma^{(k)},\beta^{(k)}}(x^{(k)})$ to $N_{BN}^{tr} = N$
 - Modify each layer in $N_{RN}^{tr} = N$ with input $x^{(k)}$ to take $y^{(k)}$ instead
 - Train $N_{\text{RN}}^{\text{tr}}$ and optimize $\theta \cup \{\gamma^{(k)}, \beta^{(k)}\}_{k=1}^K$
 - $N_{\rm PNI}^{\rm inf} = N_{\rm PNI}^{\rm tr}$
 - for k = 1, ..., K
 - Process multiple training minibatches and determine $\mathbb{E}[x] = \mathbb{E}_{\mathcal{B}}[\mu_{\mathcal{B}}]$ and $V[x] = \frac{m}{m-1}\mathbb{E}_{\mathcal{B}}[\sigma_{\mathcal{B}}^2]$
 - In $N_{\text{BN}}^{\text{inf}}$ replace the transform $y = BN_{\gamma,\beta}(x)$ with $y = \frac{\gamma}{\sqrt{V[x] + \epsilon}}x + (\beta \frac{\gamma \mathbb{E}[x]}{\sqrt{V[x] + \epsilon}})$