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Deep feedforward networks

e Also known as feedforward neural network or multilayer perceptron
e Goal of such network is to approximate some function f*

e For classifier, x is mapped to category y ie. y = f*(x)

e A feedforward network maps y = f(x; ) and learns 6 for which the result is the

best function approximation

¢ Information flows from input to intermediate to output

e No feedback, directed acyclic graph

e For general model, it can have feedback and known as recurrent neural network
e Typically it represents composition of functions

e Three functions (", f(?) f(®) are connected in chain
e Overall function realized is f(x) = f® (f?(f(V(x)))
e The number of layers provides the depth of the model

e Goal of NN is not to model brain accurately!



Multilayer neural network
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Issues with linear FFN

e Fit well for linear and logistic regression
e Convex optimization technique may be used
e Capacity of such function is limited

e Model cannot understand interaction between any two variables

IIT Patna 5



Overcome issues of linear FFN

e Transform x (input) into ¢(x) where ¢ is nonlinear transformation
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Overcome issues of linear FFN

e Transform x (input) into ¢(x) where ¢ is nonlinear transformation
e How to choose ¢?
e Use a very generic ¢ of high dimension

e Enough capacity but may result in poor generalization
e Very generic feature mapping usually based on principle of local smoothness
e Do not encode enough prior information

e Manually design ¢
e Require domain knowledge
e Strategy of deep learning is to learn ¢
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Goal of deep learning

e We have amodel y = f(x; 0, w) = ¢(x;0)'w
We use 6 to learn ¢
w and ¢ determines the output. ¢ defines the hidden layer

It looses the convexity of the training problem but benefits a lot
Representation is parameterized as ¢(x, 0)

e 0 can be determined by solving optimization problem

Advantages

e ¢ can be very generic

e Human practitioner can encode their knowledge to designing ¢(x; 6)
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Design issues of feedforward network

e Choice of optimizer

e Cost function

e The form of output unit

e Choice of activation function

e Design of architecture - number of layers, number of units in each layer
e Computation of gradients
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e Let us choose XOR function
e Target function is y = f*(x) and our model provides y = f(x; 0)
e Learning algorithm will choose the parameters 6 to make f close to f*
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e This can be treated as re%ression problem and MSE error can be chosen
. * . 2
as loss function (J(0) = 7 %(f (x) — f(x;0)))
e We need to choose f(x; ) where 6 depends on w and b

e Let us consider a linear model f(x; w,b) = x'w + b

1

e Solving these, we getw = Oand b = ;
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Simple FFN with hidden layer

e Let us assume that the hidden unit h computes

fO(x; W, c) @

—O
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Simple FFN with hidden layer

e Let us assume that the hidden unit h computes

fO(x; W, c) @
o In the next layer y = f(?)(h; w, b) is computed
e Complete model f(x; W.c,w. b) = f@(f()(x))

e Suppose f!)(x) = W'xand f?(h) = h'w thenf(x) =
wWTx

—O
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Simple FFN with hidden layer (contd.)

e We need to have nonlinear function to describe the

features @

e Usually NN have affine transformation of learned
parameters followed by nonlinear activation func-
tion

e Letususe h = g(W'x +c)

e Let us use RelU as activation function g(z

| X]
max{0, 7} ONO

e g is chosen element wise h; = g(x'W.; + ¢))

O ORNO)
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Simple FFN with hidden layer (contd.)

e Complete network is f(x; W, c,w, b) = w' max{0,W'x +c} + b
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Simple FFN with hidden layer (contd.)
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Simple FFN with hidden layer (contd.)

e Complete network is f(x; W, c,w,b) = w' max{0,W'x +c} + b
e A solution for XOR problem can be as follows

[ | s

e Now we have

- O -0
N - = O
N - =~ O
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Simple FFN with hidden layer (contd.)

e Complete network is f(x; W, c,w,b) = w' max{0,W'x +c} + b
e A solution for XOR problem can be as follows

[ | s

e Now we have

O O O O

1 0O 1 1 .

0 1 M E add bias c
1 1 2 2
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Simple FFN with hidden layer (contd.)

e Complete network is f(x; W, c,w,b) = w' max{0,W'x +c} + b
e A solution for XOR problem can be as follows

[ | s

e Now we have

0O 0O o —1
1 0 1 1 . 1 0
0 1 M E add bias c 1 0 |’ apply h
1 1 2 2 2 1
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Simple FFN with hidden layer (contd.)

e Complete network is f(x; W, c,w,b) = w' max{0,W'x +c} + b
e A solution for XOR problem can be as follows

11 0 1
11 ’C_{—1 ’W_{—z]’b_o

e Now we have

o

, add bias ¢ ,apply h

N = = O
N = = O
N = = O
N = = O
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Simple FFN with hidden layer (contd.)

e Complete network is f(x; W, c,w,b) = w' max{0,W'x +c} + b
e A solution for XOR problem can be as follows

11 0] 1
.w_[1 1 ,c_{_1 ,W—{_z],b—O
e Now we have
OO0 OO0 0 —1 OO0
1 0 1 1 . 1 O 1 0 .
o X = 0 1 , XW = 11 , add bias c 10 ,apply h 10 , multi-
1 1 2 2 2 1 2 1
0]
. 1
ply with w 1
0
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Gradient based learning

e Similar to machine learning tasks, gradient descent based learning is
used

e Need to specify optimization procedure, cost function and model family
e For NN, model is nonlinear and function becomes nonconvex
e Usually trained by iterative, gradient based optimizer

¢ Solved by using gradient descent or stochastic gradient descent (SGD)
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Gradient descent

e For a function y = f(x), derivative (slope at point x) of it is f'(x) = %

e A small change in the input can cause output to move to a value given
by f(x + €) = f(x) + f'(x)

e We need to take a jump so that y reduces (assuming minimization prob-
lem)

e We can say that f(x — esign(f'(x))) is less than f(x)

e For multiple inputs partial derivatives are used ie. a%f(x)

e Gradient vector is represented as V,f(x)

e Gradient descent proposes a new point as x' = x — ¢V,f(x) where ¢ is
the learning rate
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Stochastic gradient descent

e Large training set are necessary for good generalization
e Cost function used for optimizationis J(8) = L 3" L(x(), y() )

e Gradient descent requires V4J(0) = L > VoL (x), y() )
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e Computation cost is O(m)
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Stochastic gradient descent

e Large training set are necessary for good generalization
e Cost function used for optimizationis J(8) = L 3" L(x(), y() )
e Gradient descent requires V4J(0) = L > VoL (x), y() )

e Computation cost is O(m)

e For SGD, gradient is an expectation estimated from a small sample
known as minibatch (B = {x(V_ ... x(")1)

1 o
e Estimated gradientis g — o Z VgL(x('), y(, 0)
i=1
e New point willbe 0 = 0 — ¢g
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Cost function

Similar to other parametric model like linear models
Parametric model defines distribution p(y|x; 0)

Principle of maximum likelihood is used (cross entropy between train-
ing data and model prediction)

Instead of predicting the whole distribution of y, some statistic of y
conditioned on x is predicted

It can also contain regularization term
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Maximum likelihood estimation

e Consider a set of m examples X = {x() ... x("™} drawn independently
from the true but unknown data generating distribution p,,(x)

o Let p,oqei(X; 6) be a parametric family of probability distribution
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o Let p,oqei(X; 6) be a parametric family of probability distribution
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Maximum likelihood estimation

e Consider a set of m examples X = {x() ... x("™} drawn independently
from the true but unknown data generating distribution p,,(x)

o Let p,oqei(X; 6) be a parametric family of probability distribution
e Maximum likelihood estimator for 0 is defined as

m
Om = arg max Pmodel(X; 0) = arg max H Prmodel(x; 0)
i=
m

e It can be written as 0, = arg max Z log pmode,(x(’); 0)
i=1
e By dividing m we get 6, = arg max Ex~pyu, 108 Pmodel(X; @)
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Maximum likelihood estimation (cont.)

e Minimizing dissimilarity between the empirical p,,:, and model distri-
bution p,,.4. and it is measured by KL divergence

DKL(ﬁdataHpmodel) = arg mein ]EXNf)data [|0g Iadata(x) - |Og pmodeI(X; 0)]
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Maximum likelihood estimation (cont.)

e Minimizing dissimilarity between the empirical p,,:, and model distri-
bution p,,.4. and it is measured by KL divergence

DKL(ﬁdataHpmodel) = arg mein ]EXNf)data [|0g Iadata(x) - |Og pmodeI(X; 0)]

e We need to minimize — arg min Ex._5, 108 Pmodel(X; 0)
0
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Conditional log-likelihood

¢ In most of the supervised learning we estimate P(y|x; 0)

e If X be the all inputs and Y be observed targets then conditional max-
imum likelihood estimator is 6, = arg max P(Y|X;0)

o If the examples are assumed to be i.i.d then we can say

_ log P(y()|x(-
O argmeaxz og P(y"|x*"; 6)

i=1
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Linear regression as maximum likelihood

e Instead of producing single prediction y for a given x, we assume the
model produces conditional distribution p(y/|x)

e For infinitely large training set, we can observe multiple examples hav-
ing the same x but different values of y

e Goal is to fit the distribution p(y/|x)
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Linear regression as maximum likelihood

e Instead of producing single prediction y for a given x, we assume the
model produces conditional distribution p(y/|x)

e For infinitely large training set, we can observe multiple examples hav-
ing the same x but different values of y
e Goal is to fit the distribution p(y|x)
e Let us assume, p(y|x) = N (y; y(x; w), 0?)
e Since the examples are assumed to be i.i.d, conditional log-likelihood is
given by
m (i) HZ

| D1x0). 9) = —m| __| (2 Hy—
;ogp(y Ix\"; 0) mlog o og(2m) Z 5

o2
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Learning conditional distributions

e Usually neural networks are trained using maximum likelihood. There-
fore the cost function is negative log-likelihood. Also known as cross
entropy between training data and model distribution

e Cost function J(0) = —Exy.p,,. 108 Pmodel(Y[X, O)

e Uniform across different models
e Gradient of cost function is very much crucial

e Large and predictable gradient can serve good guide for learning process
e Function that saturates will have small gradient

e Activation function usually produces values in a bounded zone (saturates)
e Negative log-likelihood can overcome some of the problems

e Output unit having exp function can saturate for high negative value

e Log-likelihood cost function undoes the exp of some output functions
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Learning conditional statistics

e Instead of learning the whole distribution p(y
one conditional statistics of y given x

e For a predicting function f(x; 6), we would like to predict the mean of y

x; 0), we want to learn
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e Instead of learning the whole distribution p(y
one conditional statistics of y given x

e For a predicting function f(x; 6), we would like to predict the mean of y

x; 0), we want to learn

e Neural network can represent any function f from a very wide range of
functions

e Range of function is limited by features like continuity, boundedness,
etc.
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Learning conditional statistics

e Instead of learning the whole distribution p(y
one conditional statistics of y given x

e For a predicting function f(x; 6), we would like to predict the mean of y

x; 0), we want to learn

e Neural network can represent any function f from a very wide range of
functions

e Range of function is limited by features like continuity, boundedness,
etc.

e Cost function becomes functional rather than a function
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Learning conditional statistics

e Need to solve the optimization problem

ly — f(x)II*

. :
f*=arg min EX,Y~paota
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Learning conditional statistics

e Need to solve the optimization problem
ly — f(x)|”

e Using calculus of variation, it gives f*(x) = Ey._,_.yx[Y]
e Mean of y for each value of x
e Using a different cost function f* = arg mfin Ex yopauo |Y — F(X) |1

. .
f*=arg min EX Yrbyo

e Median of y for each value of x

IIT Patna 23



Calculus of variations

e Let us consider functional J[y| = / L(x,y(x),y'(x)) dx
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Calculus of variations

e Let us consider functional J[y| = / L(x,y(x),y'(x)) dx

e Let J[y] has local minima at f. Therefore, we can say JIf] < J[f + en]
e 7 is an arbitrary function of x such that 7)(x;) = 1(x,) = O and differentiable

do
e Let us assume ®(c) = J[f + en|. Therefore, d'(0) = 0 —
€ =0
X2 dL
/ — dx =0
X1 d5 =0
Now we can sa L_ otdy + oL dy'
[ J _ = — I
¥ dyds Oy de
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/
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Calculus of variations (contd.)

e Now we have
X2 oL oL
dx = — —n')d
e=0 g /X1 <afn+af/n> *

/ 2 dL
x de

IIT Patna 25



Calculus of variations (contd.)

e Now we have
X2 oL oL
dx = — —n')d
e=0 g /X1 <afn+af/n> *

2 dL
| &
2 (oL d oL oL
:/X1 (a—fn—n&a—f,) dx + o

X2

X1
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Calculus of variations (contd.)

e Now we have
X2 oL oL
dx = — —n')d
e=0 g /X1 <afn+af/n> *

2 dL
| &
2 (oL d oL oL
:/X1 (a—fn—n&a—f,) dx + o

X oL d oL
e Hence n o axor dx =0
oL d oL

Euler-Lagrange equation — — —— =0
¢ grange ed OF  dxof

X2

X1
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e Let us consider distance between two points Aly] =

; 1+ [y'(x)]? dx

d
V(0 =2 y=fx), v2 = f(xe)
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e Let us consider distance between two points Aly] =

; 1+ [y'(x)]? dx

e y'(x) = ZIZ: yi=f(x), y2 = f(x)
L
e We have, oL_do = Owhere L = /1+ [f'(x)]?

of  dxof
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e Let us consider distance between two points Aly] =

; 1+ [y'(x)]? dx

X1

d
V(0 =2 y=fx), v2 = f(xe)
oL d oL
e We have, Ao Owhere L = /14 [f'(x)]?
s d oL
e As f does not appear explicitly in L, hence —— = 0

dx Of'
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e Let us consider distance between two points Aly] =

; 1+ [y'(x)]? dx

X1

d
° Y’(X) = d%:’ Yi= f(X1), Y2 = f(Xz)
oL d oL
e We have, Ao Owhere L = /14 [f'(x)]?
s d oL
e As f does not appear explicitly in L, hence —— = 0
dx Of'

e Now we have, i fx) —
dx \/1+ [f(x)]?
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e Taking derivative we get —— - =0
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. .. d?f 1
e Taking derivative we get —— - ;=0
< VIFTFP
d*f
e Therefore we have, — = 0

dx?
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. .. d?f 1
e Taking derivative we get el ;=0
< VIR |
d*f
e Therefore we have, — = 0
dx2

— XoY1 — X
Yo — W1 and b — 2Y1 1Y2

e Hence we have f(x) = mx + b with m =
X2 — X X2 — X
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Output units

e Choice of cost function is directly related with the choice of output
function

o In most cases cost function is determined by cross entropy between
data and model distribution

e Any kind of output unit can be used as hidden unit
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Linear units

e Suited for Gaussian output distribution
e Given features h, linear output unit producesy = W'h + b
e This can be treated as conditional probability p(y|x) = N (y; y,1)

e Maximizing log-likelihood is equivalent to minimizing mean square er-
ror
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Sigmoid unit

e Mostly suited for binary classification problem that is Bernoulli output
distribution
e The neural networks need to predict p(y = 1|x)

e If linear unit has been chosen, p(y = 1|x) = max {0, min{1, W'h + b} }
e Gradient?

e Model should have strong gradient whenever the answer is wrong
e Let us assume unnormalized log probability is linear with z = Wh + b

e Therefore, log 15()/) =Yyz= f’(Y) = exp(yz) = P(y) = Zy/ej;(_:)}();)p(y/z)

e It can be written as P(y) = o((2y — 1)z)

e The loss function for maximum likelihood is
J(0) = —log P(y|x) = —logo((2y — 1)z) = ¢((1 - 2y)z)
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e Similar to sigmoid. Mostly suited for multinoulli distribution
e We need to predict a vector y such that §; = P(Y = i|x)

e A linear layer predicts unnormalized probabilities z = W'h + b that is
zi = log P(y = i|x)

EXPp Z;
e Formally, softmax(z); = ————
LY exp(z)
e Log in log-likelihood can undo exp log softmax(z — log Z exp(z)

e Does it saturate?
e What about incorrect prediction?

e Invariant to addition of some scalar to all input variables ie.
softmax(z) = softmax(z + c)
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Hidden units

e Active area of research and does not have good guiding theoretical prin-
ciple

e Usually rectified linear unit (ReLU) is chosen in most of the cases

e Design process consists of trial and error, then the suitable oneis chosen

e Some of the activation functions are not differentiable (eg. ReLU)
o Still gradient descent performs well

e Neural network does not converge to local minima but reduces the value of cost
function to a very small value
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Generalization of RelLU

ReLU is defined as g(z) = max{0, z}

Using non-zero slope, h; = g(z, ); = max(0, z;) + «; min(0, z;)
e Absolute value rectification will make o; = —1and g(z) = ||

Leaky ReLU assumes very small values for o;

Parametric RelU tries to learn «; parameters

Maxout unit g(z); = maxz;
jeGW
e Suitable for learning piecewise linear function
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Logistic sigmoid & hyperbolic tangent

e Logistic sigmoid g(z) = o(2)
e Hyperbolic tangent g(z) = tanh(z)
e tanh(z) = 20(2z) —
e Widespread saturation of sigmoidal unit is an issue for gradient based
learning
e Usually discouraged to use as hidden units

e Usually, hyperbolic tangent function performs better where sigmoidal
function must be used
e Behaves linearly at O

e Sigmoidal activation function are more common in settings other than feedfor-
ward network
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Other hidden units

e Differentiable functions are usually preferred
e Activation function h = cos(Wx + b) performs well for MNIST data set

e Sometimes no activation function helps in reducing the number of pa-
rameters

e Radial Basis Function - ¢(x, c) = ¢(||x —c||)
e Gaussian - exp(—(er)?)

e Softplus - g(x) = ((x) = log(1 + exp(x))

e Hard tanh - g(x) = max(—1, min(1, x))

e Hidden unit design is an active area of research
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Architecture design

e Structure of neural network (chain based architecture)

e Number of layers
e Number of units in each layer
e Connectivity of those units

¢ Single hidden layer is sufficient to fit the training data

e Often deeper networks are preferred

e Fewer number of units
e Fewer number of parameters
o Difficult to optimize
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Back propagation

¢ In a feedforward network, an input x is read and produces an output y
e This is forward propagation

e During training forward propagation continues until it produces cost
J(0)

e Back-propagation algorithm allows the information to flow backward in
the network to compute the gradient

e Computation of analytical expression for gradient is easy

e We need to find out gradient of the cost function with respect to the
parameters ie. VyJ(0)
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Computational graph
O,

relu

()——

PN




Chain rule of calculus

e Back-propagation algorithm heavily depends on it

e Let x be areal number and y = g(x) and z = f(g(x)) = f(y)

dz dzd
e Chainrule says — — Y

dx d_ya
e This can be generalized: Letx c R,y ¢ R",g: R™ — R"andf : R —

0z 0z Oy;
R andy = g(x) and z = f(y) then o Z By; Ox

e In vector notation it will be where Ed)—)’: is the n x m Jacobian matrix of g

oy
Viz = ( 8x> Vyz
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Application of chain rule

e Let us consider u") be the loss quantity. Need to find out the gradient
for this.
e Let u(Y to u(") are the inputs

e Therefore, we wish to compute - " where i — 1,2,...,n;

ou ('
e Let us assume the nodes are ordered so that we can compute one
after another

e Each ul! is associated with an operation () ie. ul) = f(A())
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Algorithm for forward pass

fori=1,...,n;do
U(i) — Xj

end for

fori=n;+1,....,ndo
AW < Ly0)|j € Pa(u®)}
u® « (0 (AD)

end for
return u("
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Algorithm for backward pass

grad,table[u(”)] «—1

forj = n —1down to 1do
. oud
)] M=
grad table[uV] « Z grad_table[u ]8u(f)
ijePa(u)
end for

return grad_table
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Computational graph & subexpression

= fF(Fw)F (F(w))f (w)

e We have x = f(w), y = f(x), z = f(y) @

o f

ow g’)
0z 0y Ox

~ Oy Oxow 4;

= f'(y)f (x)f'(w) 4\/}

¢




Forward propagation in MLP

e Input
e h©® = x
e Computation for each layerk =1, ...,/
e a) — p) 1 Wpk-
o h® = f(a®)
e Computation of output and loss function
o y=h()

o J=L(y,y)+ \Q2(0)
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Backward computation in MLP

e Compute gradient at the output
e g < V;J = V;,L()A’, y)
e Convert the gradient at output layer into gradient of pre-activation
o g Vo) =8oFf(a¥)
e Compute gradient on weights and biases
e Vil =8+ AV,,0Q(0)
e Vuwwl = gh(kJ)T + )\Vw(k)Q(Q)
e Propagate the gradients wrt the next lower level activation
® g+ V)= wkTg
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Computation of derivatives

e Takes a computational graph and a set of numerical values for the in-
puts, then return a set of numerical values

e Symbol-to-number differentiation
e Torch, Caffe

e Takes computational graph and add additional nodes to the graph that
provide symbolic description of derivative

e Symbol-to-symbol derivative
e Theano, TensorFlow
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Back propagation

f1'(x) f1

X 1(x)+f2(x)
fo'(x)| f2
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Back propagation

f1

F1°(x)+£2°(x)

f2
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Backpropagation

X1

X2
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Backpropagation
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Backpropagation
X1*
Z (3 M, - (target — out)?
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Backpropagation
X1 x‘ \

>«

oL
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0qQ

A
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Backpropagation
X1 x‘ \

t
Z Uw 8 2 = (target — out)?

dout oL
% “Oa dout

A

X2
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Backpropagation

\ out

g > L = (target — out)?

dout oL
oa Oout

A
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Backpropagation

out
g I > L = (target — out)?
dout | oL
oa Oout

oL __ 9L Qout Oa

ow; — Oout Oa Owy
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation

L = (target — out)?
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Backpropagation

L = (target — out)?
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation
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Backpropagation

L = (target — out)?
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Backpropagation
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