Introduction to Deep Learning

Ariiit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

• Also known as feedforward neural network or multilayer perceptron

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f*
 - For classifier, **x** is mapped to category **y** ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f*
 - For classifier, **x** is mapped to category y ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation
- Information flows from input to intermediate to output
 - No feedback, directed acyclic graph
 - For general model, it can have feedback and known as recurrent neural network

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f*
 - For classifier, **x** is mapped to category y ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation
- Information flows from input to intermediate to output
 - No feedback, directed acyclic graph
 - For general model, it can have feedback and known as recurrent neural network
- Typically it represents composition of functions
 - Three functions $f^{(1)}$, $f^{(2)}$, $f^{(3)}$ are connected in chain
 - Overall function realized is $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$
 - The number of layers provides the depth of the model

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f*
 - For classifier, x is mapped to category y ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation
- Information flows from input to intermediate to output
 - No feedback, directed acyclic graph
 - For general model, it can have feedback and known as recurrent neural network
- Typically it represents composition of functions
 - Three functions $f^{(1)}$, $f^{(2)}$, $f^{(3)}$ are connected in chain
 - Overall function realized is $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$
 - The number of layers provides the depth of the model
- Goal of NN is not to model brain accurately!

Multilayer neural network

Issues with linear FFN

- Fit well for linear and logistic regression
- Convex optimization technique may be used
- Capacity of such function is limited
- Model cannot understand interaction between any two variables

• Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?
 - Use a very generic ϕ of high dimension
 - Enough capacity but may result in poor generalization
 - Very generic feature mapping usually based on principle of local smoothness

• Do not encode enough prior information

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?
 - Use a very generic ϕ of high dimension
 - Enough capacity but may result in poor generalization
 - Very generic feature mapping usually based on principle of local smoothness
 - Do not encode enough prior information
 - Manually design ϕ
 - Require domain knowledge

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?
 - Use a very generic ϕ of high dimension
 - Enough capacity but may result in poor generalization
 - Very generic feature mapping usually based on principle of local smoothness
 - Do not encode enough prior information
 - Manually design ϕ
 - Require domain knowledge
 - Strategy of deep learning is to learn ϕ

Goal of deep learning

- We have a model $\mathbf{y} = f(\mathbf{x}; \boldsymbol{\theta}, \mathbf{w}) = \phi(\mathbf{x}; \boldsymbol{\theta})^\mathsf{T} \mathbf{w}$
- We use θ to learn ϕ
- w and ϕ determines the output. ϕ defines the hidden layer
- It looses the convexity of the training problem but benefits a lot
- Representation is parameterized as $\phi(\mathbf{x}, \boldsymbol{\theta})$
 - θ can be determined by solving optimization problem
- Advantages
 - ϕ can be very generic
 - Human practitioner can encode their knowledge to designing $\phi(\mathbf{x}; \boldsymbol{\theta})$

Design issues of feedforward network

- Choice of optimizer
- Cost function
- The form of output unit
- Choice of activation function
- Design of architecture number of layers, number of units in each layer

Computation of gradients

Example

- Let us choose XOR function
- Target function is $y = f^*(x)$ and our model provides $y = f(x; \theta)$
- Learning algorithm will choose the parameters θ to make f close to f^*

Example

- Let us choose XOR function
- Target function is $y = f^*(x)$ and our model provides $y = f(x; \theta)$
- Learning algorithm will choose the parameters θ to make f close to f^*
- Target is to fit output for $X = \{[0, 0]^T, [0, 1]^T, [1, 0]^T, [1, 1]^T\}$
- This can be treated as regression problem and MSE error can be chosen as loss function $(J(\theta) = \frac{1}{4} \sum_{\mathbf{x} \in \mathbf{X}} (f^*(\mathbf{x}) f(\mathbf{x}; \theta))^2)$
- We need to choose $f(x; \theta)$ where θ depends on w and b
- Let us consider a linear model $f(x; w, b) = x^T w + b$

Example

- Let us choose XOR function
- Target function is $y = f^*(x)$ and our model provides $y = f(x; \theta)$
- Learning algorithm will choose the parameters θ to make f close to f^*
- Target is to fit output for $X = \{[0, 0]^T, [0, 1]^T, [1, 0]^T, [1, 1]^T\}$
- This can be treated as regression problem and MSE error can be chosen as loss function $(J(\theta) = \frac{1}{4} \sum_{\mathbf{x} \in \mathbf{X}} (f^*(\mathbf{x}) f(\mathbf{x}; \theta))^2)$
- We need to choose $f(x; \theta)$ where θ depends on w and b
- Let us consider a linear model $f(x; w, b) = x^T w + b$
- Solving these, we get $\mathbf{w} = \mathbf{0}$ and $\mathbf{b} = \frac{1}{2}$

• Let us assume that the hidden unit h computes $f^{(1)}(x; W, c)$

- Let us assume that the hidden unit h computes $f^{(1)}(x; W, c)$
- In the next layer $y = f^{(2)}(h; w, b)$ is computed

- Let us assume that the hidden unit h computes $f^{(1)}(x; W, c)$
- In the next layer $y = f^{(2)}(h; w, b)$ is computed
- Complete model $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$

- Let us assume that the hidden unit h computes $f^{(1)}(x; W, c)$
- In the next layer $y = f^{(2)}(h; w, b)$ is computed
- Complete model $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$
- Suppose $f^{(1)}(\mathbf{x}) = \mathbf{W}^{\mathsf{T}}\mathbf{x}$ and $f^2(\mathbf{h}) = \mathbf{h}^{\mathsf{T}}\mathbf{w}$

- Let us assume that the hidden unit h computes $f^{(1)}(x; W, c)$
- In the next layer $y = f^{(2)}(h; w, b)$ is computed
- Complete model $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$
- Suppose $f^{(1)}(x) = \mathbf{W}^T x$ and $f^2(h) = \mathbf{h}^T \mathbf{w}$ then $f(x) = \mathbf{w}^T \mathbf{W}^T x$

- We need to have nonlinear function to describe the features
- Usually NN have affine transformation of learned parameters followed by nonlinear activation function
- Let us use $h = g(\mathbf{W}^\mathsf{T} \mathbf{x} + \mathbf{c})$
- Let us use ReLU as activation function $g(z) = \max\{0, z\}$
- g is chosen element wise $h_i = g(\mathbf{x}^T \mathbf{W}_{:,i} + c_i)$

• Complete network is $f(x; W, c, w, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T x + c\} + b$

- Complete network is $f(x; W, c, w, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + c\} + b$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\mathbf{b} = 0$

- Complete network is $f(x; W, c, w, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + \mathbf{c}\} + b$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\mathbf{b} = 0$

Now we have

• X

- Complete network is $f(x; W, c, w, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T x + c\} + b$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\mathbf{b} = 0$

Now we have

$$\bullet \ \mathbf{X} = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{array} \right],$$

- Complete network is $f(x; W, c, w, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T x + c\} + b$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\mathbf{b} = 0$

Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, XW

- Complete network is $f(x; W, c, w, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + \mathbf{c}\} + \mathbf{b}$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\mathbf{b} = 0$

Now we have

•
$$\mathbf{X} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{XW} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$,

- Complete network is $f(x; W, c, w, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + \mathbf{c}\} + \mathbf{b}$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\mathbf{b} = 0$

Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias c

- Complete network is $f(x; W, c, w, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + \mathbf{c}\} + \mathbf{b}$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\mathbf{b} = 0$

Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias $c \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$,

- Complete network is $f(x; W, c, w, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + c\} + b$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\mathbf{b} = 0$

Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias $C \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, apply $C = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, apply $C = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$

- Complete network is $f(x; W, c, w, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + \mathbf{c}\} + \mathbf{b}$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\mathbf{b} = 0$

Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias $c \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, apply $h \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$,

- Complete network is $f(x; W, c, w, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + c\} + b$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\mathbf{b} = 0$

Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias $c \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, apply $h \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, multi-

ply with w

Simple FFN with hidden layer (contd.)

- Complete network is $f(x; W, c, w, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + c\} + b$
- A solution for XOR problem can be as follows

•
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\mathbf{b} = 0$

Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias $c \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, apply $h \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, multiply with $w \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$

Gradient based learning

- Similar to machine learning tasks, gradient descent based learning is used
 - Need to specify optimization procedure, cost function and model family
- For NN, model is nonlinear and function becomes nonconvex
 - Usually trained by iterative, gradient based optimizer
- Solved by using gradient descent or stochastic gradient descent (SGD)

Gradient descent

- For a function y = f(x), derivative (slope at point x) of it is $f'(x) = \frac{dy}{dx}$
- A small change in the input can cause output to move to a value given by $f(x + \epsilon) \approx f(x) + \epsilon f'(x)$
- We need to take a jump so that y reduces (assuming minimization problem)
- We can say that $f(x \epsilon sign(f'(x)))$ is less than f(x)
- For multiple inputs partial derivatives are used ie. $\frac{\partial}{\partial x_i} f(x)$
- Gradient vector is represented as $\nabla_x f(x)$
- Gradient descent proposes a new point as $\mathbf{x}' = \mathbf{x} \epsilon \nabla_{\mathbf{x}} f(\mathbf{x})$ where ϵ is the learning rate

Stochastic gradient descent

- Large training set are necessary for good generalization
- Cost function used for optimization is $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$
- Gradient descent requires $\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$

Stochastic gradient descent

- Large training set are necessary for good generalization
- Cost function used for optimization is $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$
- Gradient descent requires $\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$
 - Computation cost is O(m)

Stochastic gradient descent

- Large training set are necessary for good generalization
- Cost function used for optimization is $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$
- Gradient descent requires $\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$
 - Computation cost is O(m)
- For SGD, gradient is an expectation estimated from a small sample known as minibatch ($\mathbb{B} = \{x^{(1)}, \dots, x^{(m')}\}$)
- Estimated gradient is $g = \frac{1}{m'} \sum_{i=1}^{m'} \nabla_{\theta} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \boldsymbol{\theta})$
- New point will be $\theta = \theta \epsilon \mathbf{g}$

Cost function

- Similar to other parametric model like linear models
- Parametric model defines distribution $p(y|x;\theta)$
- Principle of maximum likelihood is used (cross entropy between training data and model prediction)
- Instead of predicting the whole distribution of y, some statistic of y
 conditioned on x is predicted

It can also contain regularization term

- Consider a set of m examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$ drawn independently from the true but unknown data generating distribution $p_{data}(\mathbf{x})$
- Let $p_{model}(\mathbf{x}; \boldsymbol{\theta})$ be a parametric family of probability distribution

- Consider a set of m examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$ drawn independently from the true but unknown data generating distribution $p_{data}(\mathbf{x})$
- Let $p_{model}(\mathbf{x}; \boldsymbol{\theta})$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as

$$m{ heta}_{\mathsf{ML}} = rg \max_{m{ heta}} p_{model}(\mathbb{X}; m{ heta}) = rg \max_{m{ heta}} \prod_{i=1}^m p_{model}(m{x}^{(i)}; m{ heta})$$

- Consider a set of m examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$ drawn independently from the true but unknown data generating distribution $p_{data}(\mathbf{x})$
- Let $p_{model}(\mathbf{x}; \boldsymbol{\theta})$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as

$$m{ heta}_{\mathsf{ML}} = rg \max_{m{ heta}} p_{model}(\mathbb{X}; m{ heta}) = rg \max_{m{ heta}} \prod_{i=1}^{m} p_{model}(m{x}^{(i)}; m{ heta})$$

• It can be written as $\theta_{ML} = \arg \max_{\theta} \sum_{i=1}^{m} \log p_{model}(\mathbf{x}^{(i)}; \theta)$

- Consider a set of m examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$ drawn independently from the true but unknown data generating distribution $p_{data}(\mathbf{x})$
- Let $p_{model}(\mathbf{x}; \boldsymbol{\theta})$ be a parametric family of probability distribution
- Maximum likelihood estimator for θ is defined as

$$m{ heta}_{\mathsf{ML}} = rg \max_{m{ heta}} p_{model}(\mathbb{X}; m{ heta}) = rg \max_{m{ heta}} \prod_{i=1}^{m} p_{model}(m{x}^{(i)}; m{ heta})$$

- It can be written as $\theta_{ML} = \arg \max_{\theta} \sum_{i=1}^{m} \log p_{model}(\mathbf{x}^{(i)}; \theta)$
- By dividing m we get $\theta_{\mathsf{ML}} = \arg\max_{\theta} \mathbb{E}_{\mathbf{X} \sim p_{data}} \log p_{model}(\mathbf{x}; \theta)$

Maximum likelihood estimation (cont.)

• Minimizing dissimilarity between the empirical \hat{p}_{data} and model distribution p_{model} and it is measured by KL divergence

$$D_{ extsf{KL}}(\hat{p}_{data} \| p_{model}) = rg \min_{oldsymbol{ heta}} \mathbb{E}_{oldsymbol{ extbf{X}} \sim \hat{p}_{data}} \left[\log \hat{p}_{data}(oldsymbol{x}) - \log p_{model}(oldsymbol{x}; oldsymbol{ heta})
ight]$$

Maximum likelihood estimation (cont.)

• Minimizing dissimilarity between the empirical \hat{p}_{data} and model distribution p_{model} and it is measured by KL divergence

$$D_{ extit{KL}}(\hat{p}_{data} \| p_{model}) = \arg\min_{oldsymbol{ heta}} \mathbb{E}_{oldsymbol{ extit{X}} \sim \hat{p}_{data}} \left[\log \hat{p}_{data}(oldsymbol{x}) - \log p_{model}(oldsymbol{x}; oldsymbol{ heta})
ight]$$

• We need to minimize $-\arg\min_{\theta} \mathbb{E}_{\mathbf{X} \sim \hat{p}_{data}} \log p_{model}(\mathbf{x}; \theta)$

Conditional log-likelihood

- In most of the supervised learning we estimate $P(y|x;\theta)$
- If X be the all inputs and Y be observed targets then conditional maximum likelihood estimator is $\theta_{ML} = \arg \max_{\alpha} P(Y|X; \theta)$
- If the examples are assumed to be i.i.d then we can say

$$oldsymbol{ heta}_{ML} = rg \max_{oldsymbol{ heta}} \sum_{i=1}^{m} \log P(\mathbf{y}^{(i)} | \mathbf{x}^{(i)}; oldsymbol{ heta})$$

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)
- Let us assume, $p(y|\mathbf{x}) = \mathcal{N}(y; \hat{y}(\mathbf{x}; \mathbf{w}), \sigma^2)$

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)
- Let us assume, $p(y|\mathbf{x}) = \mathcal{N}(y; \hat{y}(\mathbf{x}; \mathbf{w}), \sigma^2)$
- Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

$$\sum_{i=1}^{m} \log p(\mathbf{y}^{(i)}|\mathbf{x}^{(i)};\boldsymbol{\theta})$$

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)
- Let us assume, $p(y|\mathbf{x}) = \mathcal{N}(y; \hat{y}(\mathbf{x}; \mathbf{w}), \sigma^2)$
- Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

$$\sum_{i=1}^{m} \log p(\mathbf{y}^{(i)}|\mathbf{x}^{(i)};\boldsymbol{\theta}) = -m \log \sigma - \frac{m}{2} \log(2\pi) - \sum_{i=1}^{m} \frac{\|\hat{\mathbf{y}}^{(i)} - \mathbf{y}^{(i)}\|^2}{2\sigma^2}$$

Learning conditional distributions

- Usually neural networks are trained using maximum likelihood. Therefore the cost function is negative log-likelihood. Also known as cross entropy between training data and model distribution
- Cost function $J(\theta) = -\mathbb{E}_{\mathbf{X}, \mathbf{Y} \sim \hat{p}_{data}} \log p_{model}(\mathbf{y} | \mathbf{x}, \theta)$
- Uniform across different models
- Gradient of cost function is very much crucial
 - Large and predictable gradient can serve good guide for learning process
 - Function that saturates will have small gradient
 - Activation function usually produces values in a bounded zone (saturates)
 - Negative log-likelihood can overcome some of the problems
 - Output unit having exp function can saturate for high negative value
 - Log-likelihood cost function undoes the exp of some output functions

- Instead of learning the whole distribution $p(y|x;\theta)$, we want to learn one conditional statistics of y given x
 - For a predicting function $f(x; \theta)$, we would like to predict the mean of y

- Instead of learning the whole distribution $p(y|x;\theta)$, we want to learn one conditional statistics of y given x
 - For a predicting function $f(x; \theta)$, we would like to predict the mean of y
- Neural network can represent any function f from a very wide range of functions
- Range of function is limited by features like continuity, boundedness, etc.

- Instead of learning the whole distribution $p(y|x;\theta)$, we want to learn one conditional statistics of y given x
 - For a predicting function $f(x; \theta)$, we would like to predict the mean of y
- Neural network can represent any function f from a very wide range of functions
- Range of function is limited by features like continuity, boundedness, etc.
- Cost function becomes functional rather than a function

Need to solve the optimization problem

$$f^* = \arg\min_{f} \mathbb{E}_{\mathbf{X}, \mathbf{Y} \sim p_{data}} \|\mathbf{y} - f(\mathbf{x})\|^2$$

Need to solve the optimization problem

$$f^* = \arg\min_{f} \mathbb{E}_{\mathbf{X}, \mathbf{Y} \sim p_{data}} \|\mathbf{y} - f(\mathbf{x})\|^2$$

- Using calculus of variation, it gives $f^*(\mathbf{x}) = \mathbb{E}_{\mathbf{Y} \sim p_{data}(\mathbf{y}|\mathbf{x})}[\mathbf{y}]$
 - Mean of y for each value of x

Need to solve the optimization problem

$$f^* = \arg\min_{f} \mathbb{E}_{\mathbf{X}, \mathbf{Y} \sim p_{data}} \|\mathbf{y} - f(\mathbf{x})\|^2$$

- Using calculus of variation, it gives $f^*(\mathbf{x}) = \mathbb{E}_{\mathbf{Y} \sim p_{data}(\mathbf{y}|\mathbf{x})}[\mathbf{y}]$
 - Mean of y for each value of x
- Using a different cost function $f^* = \arg\min_{f} \mathbb{E}_{\mathbf{X}, \mathbf{Y} \sim p_{data}} \|\mathbf{y} f(\mathbf{x})\|_1$

Need to solve the optimization problem

$$f^* = \arg\min_{f} \mathbb{E}_{\mathbf{X}, \mathbf{Y} \sim p_{data}} \|\mathbf{y} - f(\mathbf{x})\|^2$$

- Using calculus of variation, it gives $f^*(x) = \mathbb{E}_{Y \sim p_{data}(y|x)}[y]$
 - Mean of y for each value of x
- Using a different cost function $f^* = \arg\min_{f} \mathbb{E}_{\mathbf{X}, \mathbf{Y} \sim p_{data}} \|\mathbf{y} f(\mathbf{x})\|_1$

Median of y for each value of x

• Let us consider functional $J[y] = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$

- Let us consider functional J[y] = ∫_{x₁}^{x₂} L(x, y(x), y'(x)) dx
 Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]
- - η is an arbitrary function of x such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable

- Let us consider functional $J[y] = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of **x** such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable
- Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \left. \frac{d\Phi}{d\varepsilon} \right|_{\varepsilon=0} =$

$$\left. \int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \right|_{\varepsilon=0} dx$$

- Let us consider functional $J[y] = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of **x** such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable
- Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \left. \frac{d\Phi}{d\varepsilon} \right|_{\varepsilon=0} =$

$$\left. \int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \right|_{\varepsilon=0} dx = 0$$

- Let us consider functional $J[y] = \int_{0}^{x_2} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of x such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable
- Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \frac{d\Phi}{d\varepsilon} = 0$

$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \bigg|_{\varepsilon=0} dx = 0$$

 $\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \bigg|_{\varepsilon=0} dx = 0$ • Now we can say, $\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial y} \frac{dy}{d\varepsilon} + \frac{\partial L}{\partial y'} \frac{dy'}{d\varepsilon}$

- Let us consider functional $J[y] = \int_{0}^{x_2} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of x such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable
- Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \frac{d\Phi}{d\varepsilon} = 0$

$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \bigg|_{\varepsilon=0} dx = 0$$

- $\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \bigg|_{\varepsilon=0} dx = 0$ Now we can say, $\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial y} \frac{dy}{d\varepsilon} + \frac{\partial L}{\partial y'} \frac{dy'}{d\varepsilon}$
- As we have $y = f + \varepsilon \eta$ and $y' = f' + \varepsilon \eta'$, therefore, $\frac{dL}{dz}$

- Let us consider functional $J[y] = \int_{-\infty}^{\infty} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of **x** such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable
- Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \frac{d\Phi}{d\varepsilon} = 0$

$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \bigg|_{\varepsilon=0} dx = 0$$

- $\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \bigg|_{\varepsilon=0} dx = 0$ Now we can say, $\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial y} \frac{dy}{d\varepsilon} + \frac{\partial L}{\partial y'} \frac{dy'}{d\varepsilon}$
- As we have $y = f + \varepsilon \eta$ and $y' = f' + \varepsilon \eta'$, therefore, $\frac{dL}{dc} = \frac{\partial L}{\partial c} \eta + \frac{\partial L}{\partial c'} \eta'$

Calculus of variations (contd.)

Now we have

$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \bigg|_{\varepsilon=0} dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' \right) dx$$

Calculus of variations (contd.)

Now we have

$$\int_{x_{1}}^{x_{2}} \frac{dL}{d\varepsilon} \Big|_{\varepsilon=0} dx = \int_{x_{1}}^{x_{2}} \left(\frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' \right) dx$$
$$= \int_{x_{1}}^{x_{2}} \left(\frac{\partial L}{\partial f} \eta - \eta \frac{d}{dx} \frac{\partial L}{\partial f'} \right) dx + \frac{\partial L}{\partial f'} \eta \Big|_{x_{1}}^{x_{2}}$$

Calculus of variations (contd.)

Now we have

$$\int_{x_{1}}^{x_{2}} \frac{dL}{d\varepsilon} \Big|_{\varepsilon=0} dx = \int_{x_{1}}^{x_{2}} \left(\frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' \right) dx
= \int_{x_{1}}^{x_{2}} \left(\frac{\partial L}{\partial f} \eta - \eta \frac{d}{dx} \frac{\partial L}{\partial f'} \right) dx + \frac{\partial L}{\partial f'} \eta \Big|_{x_{1}}^{x_{2}}$$

• Hence
$$\int_{x_1}^{x_2} \eta \left(\frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right) dx = 0$$

Calculus of variations (contd.)

Now we have

$$\int_{x_{1}}^{x_{2}} \frac{dL}{d\varepsilon} \Big|_{\varepsilon=0} dx = \int_{x_{1}}^{x_{2}} \left(\frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' \right) dx
= \int_{x_{1}}^{x_{2}} \left(\frac{\partial L}{\partial f} \eta - \eta \frac{d}{dx} \frac{\partial L}{\partial f'} \right) dx + \left. \frac{\partial L}{\partial f'} \eta \right|_{x_{1}}^{x_{2}}$$

- Hence $\int_{x_1}^{x_2} \eta \left(\frac{\partial L}{\partial f} \frac{d}{dx} \frac{\partial L}{\partial f'} \right) dx = 0$
- Euler-Lagrange equation $\frac{\partial L}{\partial f} \frac{d}{dx} \frac{\partial L}{\partial f'} = 0$

• Let us consider distance between two points A[y]

$$\int_{x_1}^{x_2} \sqrt{1 + [y'(x)]^2} \, dx$$

• $y'(x) = \frac{dy}{dx}$, $y_1 = f(x_1)$, $y_2 = f(x_2)$

• Let us consider distance between two points A[y]

$$\int_{x_1}^{x_2} \sqrt{1 + [y'(x)]^2} \, dx$$

- $y'(x) = \frac{dy}{dx}$, $y_1 = f(x_1)$, $y_2 = f(x_2)$
- We have, $\frac{\partial L}{\partial f} \frac{d}{dx} \frac{\partial L}{\partial f'} = 0$ where $L = \sqrt{1 + [f'(x)]^2}$

• Let us consider distance between two points A[y]

$$\int_{x_1}^{x_2} \sqrt{1 + [y'(x)]^2} \, dx$$

- $y'(x) = \frac{dy}{dx}$, $y_1 = f(x_1)$, $y_2 = f(x_2)$
- We have, $\frac{\partial L}{\partial f} \frac{d}{dx} \frac{\partial L}{\partial f'} = 0$ where $L = \sqrt{1 + [f'(x)]^2}$
- As f does not appear explicitly in L, hence $\frac{d}{dx}\frac{\partial L}{\partial f'}=0$

• Let us consider distance between two points A[y]

$$\int_{x_1}^{x_2} \sqrt{1 + [y'(x)]^2} \, dx$$

- $y'(x) = \frac{dy}{dx}$, $y_1 = f(x_1)$, $y_2 = f(x_2)$
- We have, $\frac{\partial L}{\partial f} \frac{d}{dx} \frac{\partial L}{\partial f'} = 0$ where $L = \sqrt{1 + [f'(x)]^2}$
- As f does not appear explicitly in L, hence $\frac{d}{dx} \frac{\partial L}{\partial f'} = 0$
- Now we have, $\frac{d}{dx} \frac{f'(x)}{\sqrt{1+[f'(x)]^2}} = 0$

• Taking derivative we get
$$\frac{d^2f}{dx^2} \cdot \frac{1}{\left[\sqrt{1+[f'(x)]^2}\right]^3} = 0$$

• Taking derivative we get $\frac{d^2f}{dx^2} \cdot \frac{1}{\left[\sqrt{1+[f'(x)]^2}\right]^3} = 0$

• Therefore we have, $\frac{d^2f}{dx^2} = 0$

- Taking derivative we get $\frac{d^2f}{dx^2} \cdot \frac{1}{\left[\sqrt{1+[f'(x)]^2}\right]^3} = 0$
- Therefore we have, $\frac{d^2f}{dx^2} = 0$
- Hence we have f(x) = mx + b with $m = \frac{y_2 y_1}{x_2 x_1}$ and $b = \frac{x_2y_1 x_1y_2}{x_2 x_1}$

Output units

- Choice of cost function is directly related with the choice of output function
- In most cases cost function is determined by cross entropy between data and model distribution
- Any kind of output unit can be used as hidden unit

Linear units

- Suited for Gaussian output distribution
- Given features h, linear output unit produces $\hat{y} = W^T h + b$
- This can be treated as conditional probability $p(y|x) = \mathcal{N}(y; \hat{y}, I)$
- Maximizing log-likelihood is equivalent to minimizing mean square error

Sigmoid unit

- Mostly suited for binary classification problem that is Bernoulli output distribution
- The neural networks need to predict p(y = 1|x)
 - If linear unit has been chosen, $p(y = 1|x) = \max\{0, \min\{1, \mathbf{W}^T h + b\}\}$
 - Gradient?
- Model should have strong gradient whenever the answer is wrong
- Let us assume unnormalized log probability is linear with $z = W^T h + b$
- Therefore, $\log \tilde{P}(y) = yz \Rightarrow \tilde{P}(y) = \exp(yz) \Rightarrow P(y) = \frac{\exp(yz)}{\sum_{y' \in [0,1]} \exp(y'z)}$
 - It can be written as $P(y) = \sigma((2y 1)z)$
- The loss function for maximum likelihood is $J(\theta) = -\log P(y|\mathbf{x}) = -\log \sigma((2y-1)z) = \zeta((1-2y)z)$

Softmax unit

- Similar to sigmoid. Mostly suited for multinoulli distribution
- We need to predict a vector \hat{y} such that $\hat{y}_i = P(Y = i | x)$
- A linear layer predicts unnormalized probabilities $\mathbf{z} = \mathbf{W}^T \mathbf{h} + \mathbf{b}$ that is $z_i = \log \tilde{P}(\mathbf{y} = i | \mathbf{x})$
- Formally, softmax(z)_i = $\frac{\exp z_i}{\sum_j \exp(z_j)}$
- Log in log-likelihood can undo exp $\log \operatorname{softmax}(\mathbf{z})_i = z_i \log \sum_j \exp(z_j)$
 - Does it saturate?
 - What about incorrect prediction?
- Invariant to addition of some scalar to all input variables ie.
 softmax(z) = softmax(z + c)

Hidden units

- Active area of research and does not have good guiding theoretical principle
- Usually rectified linear unit (ReLU) is chosen in most of the cases
- Design process consists of trial and error, then the suitable one is chosen
- Some of the activation functions are not differentiable (eg. ReLU)
 - Still gradient descent performs well
 - Neural network does not converge to local minima but reduces the value of cost function to a very small value

Generalization of ReLU

- ReLU is defined as $g(z) = \max\{0, z\}$
- Using non-zero slope, $h_i = g(\mathbf{z}, \boldsymbol{\alpha})_i = \max(0, z_i) + \alpha_i \min(0, z_i)$
 - Absolute value rectification will make $\alpha_i = -1$ and g(z) = |z|
- Leaky ReLU assumes very small values for α_i
- Parametric ReLU tries to learn α_i parameters
- Maxout unit $g(\mathbf{z})_i = \max_{j \in \mathbb{G}^{(i)}} \mathbf{z}_j$
 - Suitable for learning piecewise linear function

Logistic sigmoid & hyperbolic tangent

- Logistic sigmoid $g(z) = \sigma(z)$
- Hyperbolic tangent g(z) = tanh(z)
 - $tanh(z) = 2\sigma(2z) 1$
- Widespread saturation of sigmoidal unit is an issue for gradient based learning
 - Usually discouraged to use as hidden units
- Usually, hyperbolic tangent function performs better where sigmoidal function must be used
 - Behaves linearly at 0
 - Sigmoidal activation function are more common in settings other than feedforward network

Other hidden units

- Differentiable functions are usually preferred
- Activation function $h = \cos(Wx + b)$ performs well for MNIST data set
- Sometimes no activation function helps in reducing the number of parameters
- Radial Basis Function $\phi(\mathbf{x}, \mathbf{c}) = \phi(\|\mathbf{x} \mathbf{c}\|)$
 - Gaussian $\exp(-(\varepsilon r)^2)$
- Softplus $g(x) = \zeta(x) = \log(1 + exp(x))$
- Hard tanh g(x) = max(-1, min(1, x))
- Hidden unit design is an active area of research

Architecture design

- Structure of neural network (chain based architecture)
 - Number of layers
 - Number of units in each layer
 - Connectivity of those units
- Single hidden layer is sufficient to fit the training data
- Often deeper networks are preferred
 - Fewer number of units
 - Fewer number of parameters
 - Difficult to optimize

- In a feedforward network, an input x is read and produces an output ŷ
 This is forward propagation
- ullet During training forward propagation continues until it produces cost J(heta)
- Back-propagation algorithm allows the information to flow backward in the network to compute the gradient
- Computation of analytical expression for gradient is easy
- We need to find out gradient of the cost function with respect to the parameters ie. $\nabla_{\theta} J(\theta)$

Computational graph

Chain rule of calculus

- Back-propagation algorithm heavily depends on it
- Let x be a real number and y = g(x) and z = f(g(x)) = f(y)
- Chain rule says $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$
- This can be generalized: Let $\mathbf{x} \in \mathbb{R}^m$, $\mathbf{y} \in \mathbb{R}^n$, $\mathbf{g} : \mathbb{R}^m \to \mathbb{R}^n$ and $\mathbf{f} : \mathbb{R} \to \mathbb{R}^n$ and $\mathbf{g} = \mathbf{g}(\mathbf{x})$ and $\mathbf{g} = \mathbf{g}(\mathbf{y})$ then $\frac{\partial \mathbf{g}}{\partial \mathbf{x}_i} = \sum_{i} \frac{\partial \mathbf{g}}{\partial \mathbf{y}_i} \frac{\partial \mathbf{y}_i}{\partial \mathbf{x}_i}$
- In vector notation it will be where $\frac{\partial y}{\partial x}$ is the $n \times m$ Jacobian matrix of g

$$\nabla_{\mathbf{x}} \mathbf{z} = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^{\mathsf{T}} \nabla_{\mathbf{y}} \mathbf{z}$$

Application of chain rule

- Let us consider $u^{(n)}$ be the loss quantity. Need to find out the gradient for this.
- Let $u^{(1)}$ to $u^{(n_i)}$ are the inputs
- Therefore, we wish to compute $\frac{\partial u^{(n)}}{\partial u^{(i)}}$ where $i = 1, 2, \dots, n_i$
- Let us assume the nodes are ordered so that we can compute one after another
- Each $u^{(i)}$ is associated with an operation $f^{(i)}$ ie. $u^{(i)} = f(\mathbb{A}^{(i)})$

Algorithm for forward pass

```
for i = 1, \ldots, n_i do
    u^{(i)} \leftarrow x_i
end for
for i = n_i + 1, ..., n do
    \mathbb{A}^{(i)} \leftarrow \{\mathbf{u}^{(j)}|\mathbf{i} \in \mathsf{Pa}(\mathbf{u}^{(i)})\}
    \mathbf{u}^{(i)} \leftarrow \mathbf{f}^{(i)}(\mathbb{A}^{(i)})
end for
return u^{(n)}
```

Algorithm for backward pass

```
\begin{split} & \texttt{grad\_table}[u^{(n)}] \leftarrow \textbf{1} \\ & \textbf{for } j = n-1 \, \textbf{down to 1 do} \\ & \texttt{grad\_table}[u^{(j)}] \leftarrow \sum_{i:j \in \textit{Pa}(u^{(i)})} \texttt{grad\_table}[u^{(i)}] \frac{\partial u^{(i)}}{\partial u^{(j)}} \\ & \textbf{end for} \\ & \textbf{return } \texttt{grad\_table} \end{split}
```

Computational graph & subexpression

• We have x = f(w), y = f(x), z = f(y) ∂z $\frac{1}{\partial w}$ $= \ \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} \frac{\partial x}{\partial w}$ = f'(y)f'(x)f'(w)= f'(f(f(w)))f'(f(w))f'(w)

Forward propagation in MLP

- Input
 - $h^{(0)} = x$
- Computation for each layer k = 1, ..., l
 - $a^{(k)} = b^{(k)} + W^{(k)}h^{(k-1)}$
 - $h^{(k)} = f(a^{(k)})$
- Computation of output and loss function
 - $\hat{y} = h^{(l)}$
 - $J = L(\hat{\mathbf{y}}, \mathbf{y}) + \lambda \Omega(\theta)$

Backward computation in MLP

- Compute gradient at the output
 - $\mathbf{g} \leftarrow \nabla_{\hat{\mathbf{y}}} \mathbf{J} = \nabla_{\hat{\mathbf{y}}} \mathbf{L}(\hat{\mathbf{y}}, \mathbf{y})$
- Convert the gradient at output layer into gradient of pre-activation
 - $\mathbf{g} \leftarrow \nabla_{\mathbf{a}^{(k)}} \mathbf{J} = \mathbf{g} \odot \mathbf{f}'(\mathbf{a}^{(k)})$
- Compute gradient on weights and biases
 - $\nabla_{\mathbf{b}^{(k)}} \mathbf{J} = \mathbf{g} + \lambda \nabla_{\mathbf{b}^{(k)}} \Omega(\theta)$
 - $\nabla_{\mathbf{W}^{(k)}} J = \mathbf{gh}^{(k-1)T} + \lambda \nabla_{\mathbf{W}^{(k)}} \Omega(\theta)$
- Propagate the gradients wrt the next lower level activation

• $g \leftarrow \nabla_{\mathbf{h}^{(k-1)}} J = \mathbf{W}^{(k)\mathsf{T}} \mathbf{g}$

Computation of derivatives

- Takes a computational graph and a set of numerical values for the inputs, then return a set of numerical values
 - Symbol-to-number differentiation
 - Torch, Caffe
- Takes computational graph and add additional nodes to the graph that provide symbolic description of derivative
 - Symbol-to-symbol derivative
 - Theano, TensorFlow

X₁

 X_2

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial \text{out}} \frac{\partial \text{out}}{\partial a} \frac{\partial a}{\partial w_1}$$

Example

Example

