Introduction to Deep Learning

Ariiit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Neural Network

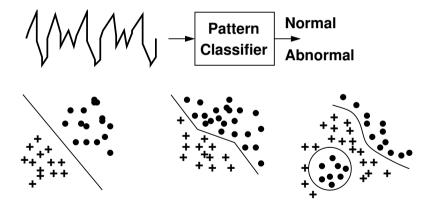
Human brain vs von Neumann computer

- Massive parallelism
- Distributed representation and computation
- Learning ability
- Generalization ability
- Adaptability
- Inherent contextual information processing
- Fault tolerance
- Low energy consumption

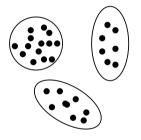
Computer vs Brain

	von Neumann	Neural system
Processor	Complex, high speed, one or a few	Simple, low speed, a large number
Memory	Separate from processor, Localized, Noncontent addressable	Integrated into processor, Distributed, Content addressable
Computing	Centralized, sequential, stored program	Distributed, parallel, self- learning
Reliability	Very vulnerable	Robust
Expertise	Numeric and symbolic manipulations	Perceptual problems
Operating environment	Well defined, well constrained	Poorly defined, unconstrained

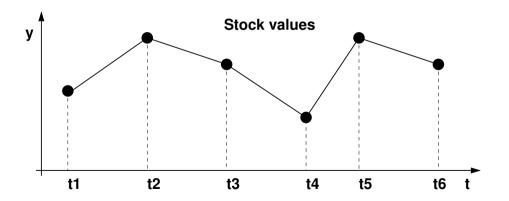
Pattern classification



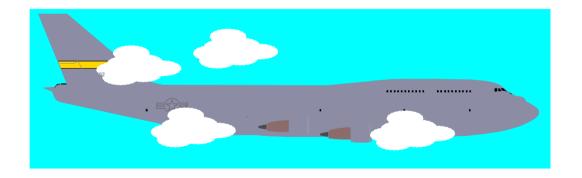
• Clustering/categorization



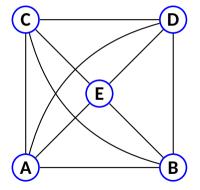
• Prediction



Retrieval

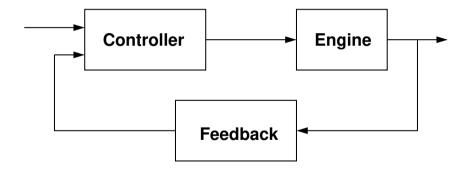


Optimization



Artificial Neuron

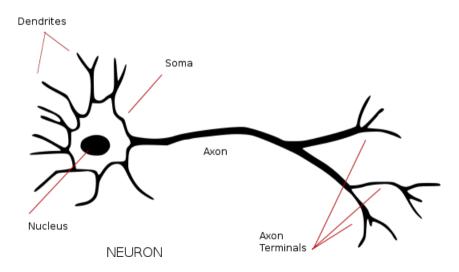
Control



History

- Started in 1940s by McCulloch and Pitt
- Rosenblatt perceptron convergence theorem (1960)
- In 1980s ANN started gaining popularity
- Again became popular after 2006

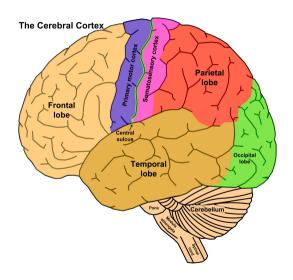
Biological Neuron



Cerebral cortex

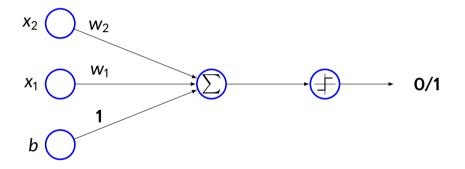
- It is a flat sheet of neurons about 2-3 millimeter thick with surface area is 2200 cm²
 - Twice the area of computer keyboard
- It contains around 10¹¹ neurons
 - Number of stars in the Milky-way
- Each neuron is connected to 10³-10⁴ other neurons
- Total connections is around 10¹⁴-10¹⁵
- Connectionist model

Human brain



Neuron

• One of the primitive models



Artificial Neuron

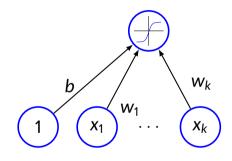
• Neuron pre-activation function

•
$$a(\mathbf{x}) = \sum_{i} w_{i}x_{i} + b = b + \mathbf{w}^{\mathsf{T}}\mathbf{x}$$

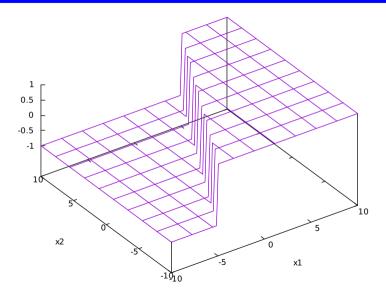
• Neuron output activation function

•
$$h(\mathbf{x}) = g(a(\mathbf{x})) = g\left(\sum_{i} w_{i}x_{i} + b\right)$$

- Notations
 - w Weight vector
 - b Neuron bias
 - g(.) Activation function

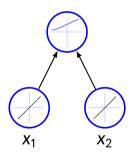


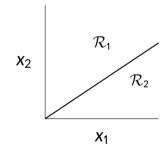
Physical interpretation



Classification using single neuron

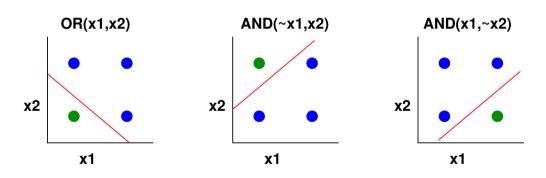
- Single neuron can do binary classification
 - Also known as logistic regression classifier





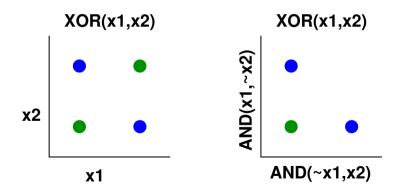
Artificial neuron

• Can solve linearly separable problems



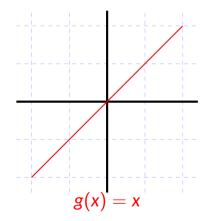
Artificial neuron: XOR problem

• There are issues for linear separation



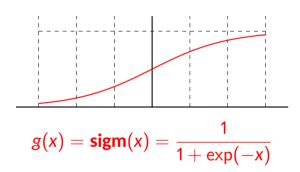
• Linear activation function

- Not very interesting
- No change in values
- Huge range



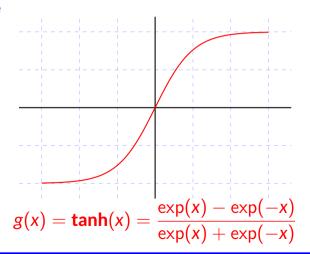
Sigmoid function

- Values lie between 0 and 1
- Strictly increasing function
- Bounded



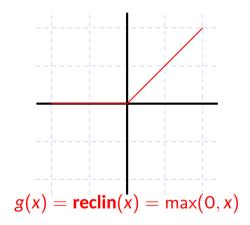
• Hyperbolic Tangent (Tanh) function

- Can be positive or negative
- Values lie between -1 and 1
- Strictly increasing function
- Bounded



Rectified linear activation function

- Bounded below by 0
- Strictly increasing function
- Not upper bounded



Single hidden layer neural network

Hidden layer pre-activation

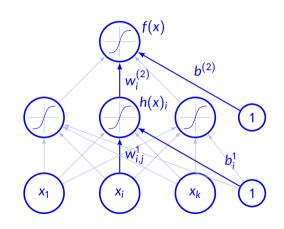
$$a(x) = b^1 + w^1 x$$

• Hidden layer activation

$$h(\mathbf{x}) = g(a(\mathbf{x}))$$

Output layer activation

$$f(\mathbf{x}) = o(b^{(2)} + \mathbf{w}^{(2)\mathsf{T}}h^{1}(\mathbf{x}))$$



Multi layer neural network

Pre-activation in layer

$$k > 0 (h^{(0)}(x) = x)$$

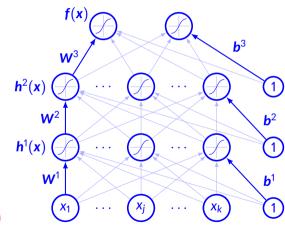
 $a^{(k)}(x) = b^{(k)} + W^{(k)}h^{(k-1)}x$

• Hidden layer activation

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$$

Output layer activation

$$h^{(L+1)}(x) = o(a^{(L+1)}(x)) = f(x)$$



Multiclass classification

- Need multiple outputs that is one neuron for each class
- Need to determine probability of p(y = c|x)
- Softmax activation function is used at the output

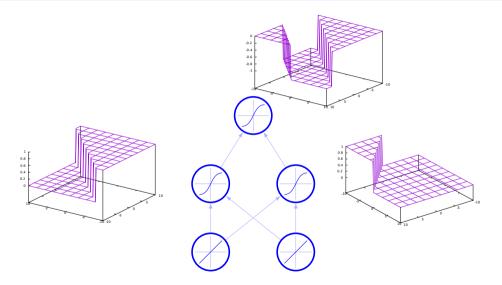
$$o(a) = \mathbf{softmax}(a) = \begin{bmatrix} \exp(a_1) & \exp(a_2) \\ \sum_c \exp(a_c) & \sum_c \exp(a_c) \end{bmatrix}^\mathsf{T}$$

- Strictly positive
- Sum to 1
- Class having the highest probability will be the predicted output

IIT Patna

27

Capacity of neural network



Capacity of neural network

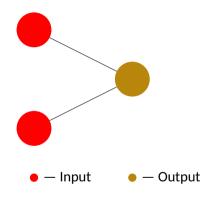
- Universal approximation theorem (Hornik,1991)
 - A single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units.
- The result is applicable for other hidden layer activation functions such as sigmoid, tanh, etc.
- This is a promising result, but it does not say that there is a learning algorithm to find the necessary parameter values!

Types of Neural Network

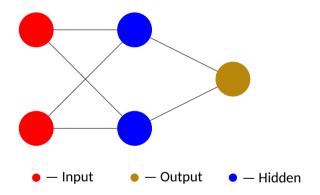
- Feed forward neural network
- Radial basis function network
- Recurrent neural network
- Boltzmann machine
- Long short term memory network

and many more

Perceptron

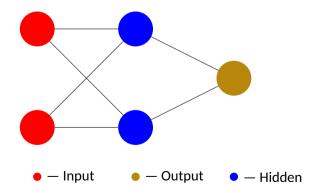


Feed Forward

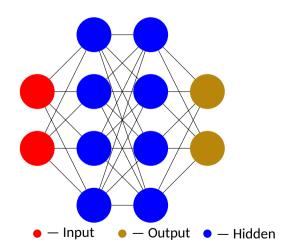


Radial Basis Function

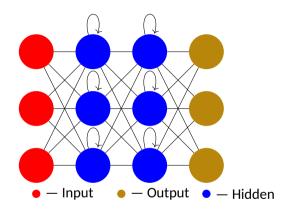
- Typically it will have 3 layers
- Distance from a center vector is computed



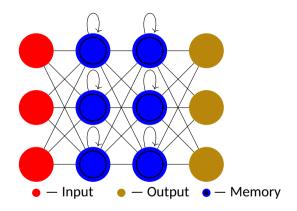
Deep Feed Forward



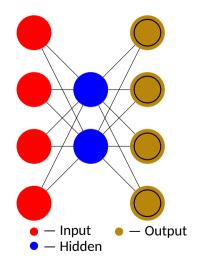
Recurrent Neural Network



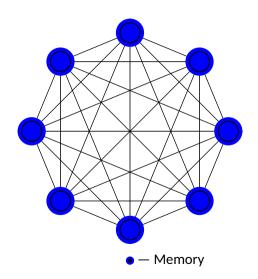
Long Short Term Memory



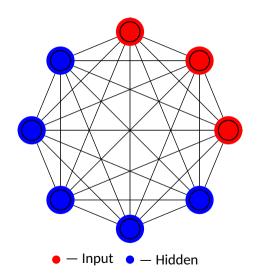
Auto Encoder



Markov chain



Boltzmann Machine



Learning the parameters

- The network must learn the connection weights from available training examples
- Learning can be
 - Supervised
 - Unsupervised
 - Hybrid
- Four basic types of learning rule
 - Error correction rule
 - Boltzmann learning
 - Hebbian
 - Competitive learning

Error correction rule

- Output is generated based on the weight values but this may vary from desired value
- The error information is used to update the weight value
- Perceptron learning algorithm
 - Initialize the weights and threshold to small random numbers
 - Present a pattern vector and evaluate the output of neuron
 - Update the weight according to $w_j(t+1) = w_j(t) + \eta(d-y)x_j$

Back propagation algorithm

Boltzmann learning

- Usually symmetric recurrent network consisting of binary units
- A subset of neurons interact with environment
- Generally it has two modes
 - Clamped Visible neurons are clamped to specific states
 - Free-running Visible and hidden unit operate freely
- Stochastic learning rule derived from information theoretic and thermodynamic principles
- Learning rule is given by $\Delta w_{ij} = \eta(\bar{\rho}_{ij} \rho_{ij})$

Hebbian rule

- One of the oldest learning rules
- If neuron on both sides of a synapse are activated synchronously and repeatedly, the synapse's strength is selectively increased
- Mathematically, it can be described as $w_{ij}(t+1) = w_{ij}(t) + \eta y_j(t) x_i(t)$

Competitive learning rule

- Output units compete among themselves for activation
- Only one output is active at time
- Also known as winner-take-all
- Mathematically, it can be represented as $w_{i*}x \ge w_{i}x$
- Competitive learning rule can be stated as

$$\Delta w_{ij} = \begin{cases} \eta(x_j^u - w_{i*j}) & i = i^* \\ 0 & i \neq i^* \end{cases}$$

Summary

- Error correction rule Single or multilayer perceptron
 - Pattern classification, function approximation, prediction, control
- Boltzmann Recurrent
 - Pattern classification
- Hebbian Multilayer feed forward
 - Pattern classification, data analysis
- Competitive
 - Within class categorization, data compression