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Machine Learning
• A form of applied sta�s�cs with
• Increased emphasis on the use of computers to sta�s�cally es�mate complicated
func�on
• Decreased emphasis on proving confidence intervals around these func�ons
• Two primary approaches
• Frequen�st es�mators
• Bayesian inference
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Types of Machine Learning Problems

• Supervised
• Unsupervised
• Other variants
• Reinforcement learning
• Semi-supervised
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Learning algorithm

• A ML algorithm is an algorithm that is able to learn from data
• Mitchelle (1997)
• A computer program is said to learn from experience E with respect to some class
of task T and performance measure P, if its performance at task in T as measured
by P, improves with experience E.
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Task
• A ML task is usually described in terms of how ML system should pro-
cess an example
• Example is a collec�on of features that have been quan�ta�vely measured from
some objects or events that we want the learning system process
• Represented as x ∈ Rn where xi is a feature
• Feature of an image — pixel values
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Common ML Task
• Classifica�on
• Need to predict which of the k categories some input belongs to
• Need to have a func�on f : Rn → {1, 2, . . . , k}
• y = f(x) input x is assigned a category iden�fied by y
• Examples
• Object iden�fica�on
• Face recogni�on

• Regression
• Need to predict numeric value for some given input
• Need to have a func�on f : Rn → R
• Examples
• Energy consump�on
• Amount of insurance claim
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Common ML Task (contd.)
• Classifica�on with missing inputs
• Need to have a set of func�ons
• Each func�on corresponds to classifying x with different subset of inputs missing
• Examples
• Medical diagnosis (expensive or invasive)

• Transcrip�on
• Need to convert rela�vely unstructured data into discrete, textual form
• Op�cal character recogni�on
• Speech recogni�on

• Machine transla�on
• Conversion of sequence of symbols in one language to some other language
• Natural language processing (English to Spanish conversion)
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Common ML Task (contd.)
• Structured output
• Output is a vector with important rela�onship between the different elements
• Mapping natural language sentence into a tree that describes gramma�cal structure
• Pixel based image segmenta�on (eg. iden�fy roads)

• Anomaly detec�on
• Observes a set of events or objects and flags if some of them are unusual
• Fraud detec�on in credit card

• Synthesis and sampling
• Generate new example similar to past examples
• Useful for media applica�on
• Text to speech
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Performance measure
• Accuracy is one of the key measures
• The propor�on of examples for which the model produces correct outputs
• Similar to error rate
• Error rate o�en referred as expected 0-1 loss

• Mostly interested howML algorithm performs on unseen data
• Choice of performance measure may not be straight forward
• Transcrip�on
• Accuracy of the system at transcribing en�re sequence
• Any par�al credit for some elements of the sequence are correct
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Experience
• Kind of experience allowed during learning process
• Supervised
• Unsupervised
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Supervised learning

• Allowed to use labeled dataset
• Example — Iris
• Collec�on of measurements of different parts of Iris plant
• Each plant means each example
• Features
• Sepal length/width, petal length/width
• Also record which species the plant belong to
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Supervised learning (contd.)
• A set of labeled examples 〈x1, x2, . . . , xn, y〉
• xi are input variables
• y output variable

• Need to find a func�on f : X1 × X2 × . . . Xn → Y
• Goal is to minimize error/loss func�on
• Like to minimize over all dataset
• We have limited dataset
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Unsupervised learning

• Learns useful proper�es of the structure of data set
• Unlabeled data
• Tries to learn en�re probability distribu�on that generated the dataset
• Examples
• Clustering, dimensionality reduc�on
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Supervised vs Unsupervised learning
• Unsupervised a�empts to learn implicitly or explicitly probability dis-
tribu�on of p(x)
• Supervised tries to predict y from x ie. p(y|x)

• Unsupervised learning can be decomposed as supervised learning

p(x) =
n∏
i=1

p(xi|x1, x2, . . . , xi−1)

• Solving supervised learning using tradi�onal unsupervised learning

p(y|x) = p(x, y)∑
y′ p(x, y′)
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Linear regression
• Predic�on of the value of a con�nuous variable
• Example — price of a house, solar power genera�on in photo-voltaic cell, etc.

• Takes a vector x ∈ Rn and predict scalar y ∈ R
• Predicted value will be represented as ŷ = wTx wherew is a vector of parameters
• xi receives posi�ve weight — Increasing the value of the feature will increase the value
of y
• xi receives nega�ve weight — Increasing the value of the feature will decrease the value
of y
• Weight value is very high/large — Large effect on predic�on
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Performance
• Assume, we havem examples not used for training
• This is known as test set

• Design matrix of inputs is X(test) and target output is a vector y(test)
• Performance is measured by Mean Square Error (MSE)

MSE(test) =
1
m

∑
i

(
ŷ(test) − y(test)

)2
i =

1
m
‖ŷ(test) − y(test)‖22

• Error increases when the Euclidean distance between target and predic�on in-
creases

• The learning algorithm is allowed to gain experience from training set
(X(train), y(train))
• One of the common ideas is to minimize MSE(train) for training set
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Minimiza�on of MSE
• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m‖ŷ

(train) − y(train)‖22 = 0

⇒ 1
m∇w‖X(train)w − y(train)‖22 = 0

⇒ ∇w(X(train)w − y(train))T(X(train)w − y(train)) = 0

⇒ ∇w(wTX(train)TX(train)w − 2wTX(train)Ty(train) + y(train)Ty(train)) = 0

⇒ 2X(train)TX(train)w − 2X(train)Ty(train) = 0

⇒ w = (X(train)TX(train))−1X(train)Ty(train)
• Linear regression with bias term ŷ = [wT w0][x 1]T
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Moore-Penrose Pseudoinverse
• Let A ∈ Rn×m

• Every A has pseudoinverse A+ ∈ Rm×n and it is unique
• AA+A = A
• A+AA+ = A+

• (AA+)T = AA+

• (A+A)T = A+A

• A+ = limα→0(ATA+ αI)−1AT

• Example
• If A = [1 2]T then A+ = [ 15

2
5 ]

• If A =

 1 2
2 1
1 5

 then A+ =

[
0.121212 0.515152 −0.151515
0.030303 −0.121212 0.212121

]
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Regression example

 0

 10

 20

 30

 40

 50

 60

 70

 0  2  4  6  8  10  12  14

Y

X



IIT Patna 21

Regression example

 0

 10

 20

 30

 40

 50

 60

 70

 0  2  4  6  8  10  12  14

Y

X



IIT Patna 22

Example

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2  4  6  8  10  12  14



IIT Patna 23

Example
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Gradient descent
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Gradient descent
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Example

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2  4  6  8  10  12  14

M
S

E

w



IIT Patna 26

Minimiza�on of MSE: Gradient descent

• Assuming MSE(train) = J(w1,w2)

• Target is to min
w1,w2

J(w1,w2)

• Approach
• Start with some w1,w2
• Keepmodifyingw1,w2 so that J(w1,w2) reduces �ll the desired accuracy is achieved

• Algorithm
• Repeat the following un�l convergence wj = wj −

∂

∂wj
J(w1,w2)

• Gradient descent proposes a new point asw′ = w− ε∇wf(w)where ε
is the learning rate
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Error

• Training error - Error obtained on a training set
• Generaliza�on error - Error on unseen data
• Data assumed to be independent and iden�cally distributed (iid)
• Each data set are independent of each other
• Train and test data are iden�cally distributed

• Expected training and test error will be the same
• It is more likely that the test error is greater than or equal to the ex-
pected value of training error
• Target is to make the training error is small. Also, to make the gap
between training and test error smaller
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Regression example
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Regression example: degree 1
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Regression example: degree 2
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Regression example: degree 3
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Regression example: degree 4
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Regression example: degree 5
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Regression example: degree 6
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Underfi�ng & Overfi�ng
• Underfi�ng
• When the model is not able to obtain sufficiently low error value on the training
set

• Overfi�ng
• When the gap between training set and test set error is too large
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Example
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Underfi�ng example
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Overfi�ng example
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Be�er fit
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Capacity
• Ability to fit wide variety of func�ons
• Low capacity will struggle to fit the training set
• High capacity will can overfit by memorizing the training set
• Capacity can be controlled by choosing hypothesis space
• A polynomial of degree 1 gives linear regression ŷ = b+ wx
• By adding x2 term, it can learn quadra�c curve ŷ = b+ w1x+ w2x2

• Output is s�ll a linear func�on of parameters

• Capacity is determined by the choice of model (Representa�onal ca-
pacity)
• Finding best func�on is very difficult op�miza�on problem
• Learning algorithm does not find the best func�on but reduces the training error
• Imperfec�on in op�miza�on algorithm can further reduce the capacity of model
(effec�ve capacity)
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Capacity (contd.)
• Occam’s razor
• Among equally well hypotheses, choose the simplest one
• Vapnik-Chervonenski dimension - Capacity for binary classifier
• Largest possible value of m for which a training set of m different x point that the
classifier can label arbitrarily

• Training and test error is bounded from above by a quan�ty that grows
asmodel capacity grows but shrinks as the number of training example
increases
• Bounds are usually provided for ML algorithm and rarely provided for DL
• Capacity of deep learning model is difficult as the effec�ve capacity is limited by
op�miza�on algorithm
• Li�le knowledge on non-convex op�miza�on



Image source: Deep Learning Book
IIT Patna 42

Error vs Capacity
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Non-parametric model
• Parametric model learns a func�on described by a parameter vector
• Size of vector is finite and fixed
• Nearest neighbor regression
• Finds out the nearest entry in training set and returns the associated value as the
predicted one
• Mathema�cally, for a given point x, ŷ = yi where i = argmin ‖Xi,: − x‖22
• Wrapping parametric algorithm inside another algorithm
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Bayes error

• Ideal model is an oracle that knows the true probability distribu�on
for data genera�on
• Such model can make error because of noise
• Supervised learning
• Mapping of x to y may be stochas�c
• y may be determinis�c but x does not have all variables

• Error by an oracle in predic�ng from the true distribu�on is known as
Bayes error
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Note

• Training and generaliza�on error varies as the size of training set varies
• Expected generaliza�on error can never increase as the number of
training example increases
• Any fixed parametric model with less than the op�mal capacity will
asymptote to an error value that exceeds the Bayes error
• It is possible to haveop�mal capacity but have large gapbetween train-
ing and generaliza�on error
• Need more training examples
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No free lunch

• Averaged over all possible data genera�ng distribu�on, every classifi-
ca�on algorithm has same error rate when classifying unseen points
• Nomachine learning algorithm is universally any be�er than any other
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Regulariza�on

• A set of preferences is applied to learning algorithm so that it performs
well on a specific task
• Weight decay - In linear regression, preference on the weights is intro-
duced
• Sum of MSE and squared L2 norms of the weight is minimized ie.

J(w) = MSEtrain + λwTw

• λ = 0 - No preference
• λ becomes large - weight becomes smaller

• Regulariza�on is intended to reduce test error not training error
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Example: Weight decay
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Hyperparameters
• Se�ngs that are used to control the behavior of learning algorithm
• Degree of polynomial
• λ for decay weight

• Hyperparameters are usually not adapted or learned on the training
set
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Valida�on set

• Test data should not be used to choose the model as well as hyperpa-
rameters
• Valida�on set is constructed from training set
• Typically 80% will be used for training and rest for valida�on

• Valida�on set may be used to train hyperparameters
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Cross valida�on
• Dividing data set into training and fixed test may result into small test
set
• For large data this is not an issue
• For small data set use k-fold cross valida�on
• Par��on the data in k disjoint subsets
• On i-th trial, i-th set used as the test set and rest are treated as training set
• Test error can be determined by averaging the test error across the k trials
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Point es�ma�on
• To provide single best predic�on of some quan�ty of interest
• Es�ma�on of the rela�onship between input and output variables
• It can be single parameter or a vector of parameters
• Weights in linear regression

• Nota�on: true parameter — θ and es�mate — θ̂

• Let {x(1), x(2), . . . , x(m)} be set of m independent and iden�cally dis-
tributed point.
• A point es�mator is a func�on θ̂m = g(x(1), x(2), . . . , x(m))
• Good es�mator is a func�on whose output is close to θ
• θ is unknown but fixed
• θ̂ depends on data
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Bias
• Difference between this es�mator’s expected value and the true value
of the parameter being es�mated
• bias(θ̂m) = E(θ̂m)− θ

• An es�mator will be said unbiased if bias(θ̂m) = 0
• E(θ̂m) = θ

• An es�mator will be asympto�cally unbiased if lim
m→∞

bias(θ̂m) = 0
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Es�mator for Gaussian distribu�on
• Let us consider a set of samples {x(1), x(2), . . . , x(m)} that are indepen-
dently and iden�cally distributed according to
p(x(i)) = N (x(i);µ, σ2) ∀i = 1, 2, . . . ,m

• Gaussian mean es�mator (aka sample mean) — µ̂m =
1
m

m∑
i=1

x(i)

• Bias of sample mean
bias(µ̂m) = E(µ̂m)− µ = E

(
1
m

m∑
i=1

x(i)
)
− µ

=

(
1
m

m∑
i=1

E
(
x(i)
))
− µ =

(
1
m

m∑
i=1

µ

)
− µ = µ− µ = 0
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Es�mator for Gaussian distribu�on (cont)
• Sample variance

• σ̂2
m =

1
m

m∑
i=1

(x(i) − µ̂m)
2

• Bias of sample variance bias(σ̂2m) = E(σ̂2m)− σ2

• It can be shown that, E(σ̂2m) =
m− 1
m

σ2
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Es�mator for Gaussian distribu�on (cont)
• Sample variance

• σ̂2
m =

1
m
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i=1

(x(i) − µ̂m)
2
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m
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Trade off Bias and Variance

• Bias — Expected devia�on from the true value of the func�on param-
eter
• Variance —Measure of devia�on from the expected es�mator value
• Choice of es�mator — large bias or large variance?
• Use cross-valida�on
• Compare Mean Square Error

MSE = E(θ̂m − θ)2 = bias(θ̂m)2 + Var(θ̂m)



Image source: Deep Learning Book
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Trade off Bias and Variance (cont)
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Logis�c regression
• Responses may be qualita�ve (categorical)
• Example: 〈Hours of study, pass/fail〉, 〈MRI scan, benign/malignant〉
• Output should be 0 or 1

• Predic�ng qualita�ve response is known as classifica�on
• Linear regression does not help
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Issues with linear regression
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Logis�c regression
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Logis�c model

• Linear regression model to represent probability p(x) = w0 + w1x

• To avoid problem, we use func�on p(x) =
ew0+w1x

1+ ew0+w1x

• Quan�ty p(x)
1−p(x) = ew0+w1x is known as odds

• Taking log on both the sides, we get log
(

p(x)
1− p(x)

)
= w0 + w1x

• Coefficient can be determined using maximum likelihood
• l(w0,w1) =

∏
i:yi=1

p(xi)
∏
j:yj=0

p(xj)
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Logis�c model (contd.)

• Similar to linear regression except the output is mapped between 0
and 1 ie.

p(y|x,θ) = σ(θTx)

where σ(x) =
1

1+ exp(−x)
(Sigmoid func�on)
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Support Vector Machine

• An approach for classifica�on
• Developed in 1990s
• Generaliza�on of maximum margin classifier
• Mostly limited to linear boundary

• Support vector classifier — broad range of classes
• SVM— Non-linear class boundary
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Hyperplane

• In n dimensional space a hyperplane is a flat affine subspace of dimen-
sion n− 1
• Mathema�cally it is defined as
• For 2 dimensions — w0 + w1x1 + w2x2 = 0
• For n dimensions — w0 + w1x1 + . . .+ wnxn = 0



IIT Patna 65

Classifica�on using Hyperplane
• Assume,m training observa�on in n dimensional space

• Separa�ng hyperplane has the property
• w0 + w1x1 + . . .+ wnxn > 0 if yi = 1
• w0 + w1x1 + . . .+ wnxn < 0 if yi = −1

• Hence, yi(w0 + w1x1 + . . .+ wnxn) > 0
• Classifica�on of test observa�on x∗ is
done based on the sign of
f(x∗) = w0 + w1x∗1 + . . .+ wnx∗n
• Magnitude of f(x∗)
• Far from 0— Confident about predic�on
• Close to 0 — Less certain
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Maximal margin classifier

• Also known as op�mal separa�ng hy-
perplane
• Separa�ng hyperplane farthest from
training observa�on
• Compute perpendicular distance from
training point to the hyperplane
• Smallest of these distances represents the
margin

• Target is to find the hyperplane for
which the margin is the largest
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Construc�on of maximal margin classifier

• Input —m points in n dimension space ie. x1, x2, . . . , xm
• Input — labels y1, y2, . . . , ym for each point xi where yi ∈ {−1, 1}
• Need to solve the following op�miza�on problem

max
w0,w1,...,wn,M

M

subject to
yi(w0 + w1xi1 + wi2 + . . .+ winxin) ≥ M ∀i = 1, . . . ,m
n∑
i=1

w2
i = 1
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Issues

• Maximal margin classifier fails to provide classifica�on in case of over-
lap
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Issues

• Single observa�on point can change the hyperplane dras�cally
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Support Vector Classifier

• Provides greater robustness to individual observa�ons
• Be�er classifica�on of most of the training observa�ons
• Worthwhile to misclassify a few training observa�ons
• Also known as so� margin classifier
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Support Vector Classifier

• Points can lie within the margin or wrong side of hyperplane
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Op�miza�on with misclassifica�on
• Input — x1, x2, . . . , xm and y1, y2, . . . , ym
• Need to solve the following op�miza�on problem

max
w0,w1,...,wn,M

M

subject to
yi(w0 + w1xi1 + . . .+ winxin) ≥ M(1− εi) ∀i = 1, . . . ,m
n∑
i=1

w2
i = 1,

m∑
i=1

εi = C

• C is non-nega�ve tuning parameter, εi - slack variable
• Classifica�on of test observa�on remains the same
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Observa�ons

• εi = 0— ith observa�on is on the correct side of margin
• εi > 0— ith observa�on is on the wrong side of margin
• εi > 1— ith observa�on is on the wrong side of hyperplane
• C—budget for the amount that the margin can be violated bym obser-
va�ons
• C = 0—No viola�on, ie. maximal margin classifier
• C > 0—No more than C observa�on can be on the wrong side of hyperplane
• C is small — Narrow margin, highly fit to data, low bias and high variance
• C is large — Fi�ng data is less hard, more bias and may have less variance
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Classifica�on with non-linear boundaries
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Classifica�on with non-linear boundaries
• Performance of linear regression can suffer for non-linear data
• Feature space can be enlarged using func�on of predictors
• For example, instead of fi�ng with x1, x2, . . . , xn features we could use
x1, x21 , x2, x22 . . . , xn, x2n as features

• Op�miza�on problem becomes
max

w0,w11,w12...,wn1,wn2,εi,M
M

subject to

yi

(
w0 +

n∑
j=1

wj1xij +
n∑
j=1

wj2x2ij

)
≥ M(1− εi) ∀i = 1, . . . ,m

n∑
i=1

2∑
j=1

w2
ij = 1,

m∑
i=1

εi ≤ C, εi ≥ 0
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Support Vector Machine

• Extension of support vector classifier that results fromenlarging feature
space

• It involves inaner product of the observa�ons f(x) = w0 +
m∑
i=1

αi〈x, xi〉

where αi - one per training example
• To es�mate αi and w0, we needm(m− 1)/2 inner products, 〈xi, xi′〉
• It turns out that αi 6= 0 for support vectors

f(x) = w0 +
∑
i∈S

αi〈x, xi〉 where S - set of support vectors
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Support Vector Machine
• Inner product is replaced with kernel, K or K(xi, xi′)
• Kernel quan�fies similarity between observa�ons K(xi, xi′) =

∑n
j=1 xijxi′j

• Above one is Linear kernel ie. Pearson correla�on

• Polynomial kernel K(xi, xi′) =
(
1+
∑n

j=1 xijxi′j
)d where d is posi�ve inte-

ger> 1
• Support vector classifier with non-linear kernel is known as support vec-
tor machine and the func�on will look

f(x) = w0 +
∑
i∈S

αiK(x, xi)

• Radial kernel: K(xi, xi′) = exp
(
−γ
∑n

i=1(xij − xi′j)2
)
where γ > 0
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Challenges for Deep Learning

• Curse of dimensionality
• Local constancy and smoothness regulariza�on
• Manifold learning


