
IIT Patna 1

Introduc�on to Deep Learning

Arijit Mondal
Dept. of Computer Science & Engineering
Indian Ins�tute of Technology Patna
arijit@iitp.ac.in



IIT Patna 2

Overview of Linear Algebra
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Scalars

• A scalar is a single number
• It can be real, integer, etc.
• Typically it will be denoted using lowercase italics: a, x, n
• Example:
• Let s ∈ R be the slope of the line
• Let n ∈ N be the number of units
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Vectors
• It is an array of numbers (eg. scalars) and arranged in order

• Typically it will be denoted using lowercase bold font: x =


x1
x2
. . .
xn


• Need to specify what kind of numbers are stored
• If each element is in R then the vector lies in Rn (Cartesian product n
�mes)
• Iden�fy points in space, each element giving the coordinate along dif-
ferent axis
• A set of elements, x1, x3, x5 can be specified as xS where S = 1, 3, 5
• x−2 is a vector containing all elements except x2
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Matrices

• A matrix is a 2D array of numbers X = [xi,j] =

 x1,1 x1,2 . . . x1,n
... ... ... ...

xm,1 xm,2 . . . xm,n


• Example nota�on for type and shape X ∈ Rm×n

• The jth column will be denoted as xj or X:,j — X =

 | | . . . |
x1 x2 . . . xn
| | . . . |


• n-dimensional vector can be represented as n rows and 1 column x = x1

...
xn
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Tensors
• A tensor is an array of numbers that may have
• Zero dimensions, and be a scalar
• One dimension, and be a vector
• Two dimensions, and be a matrix
• Or, more dimensions.
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Matrix transpose

• Rows and columns are interchanged that is XT = [xi,j]T = [xj,i]

• For example, X =

[
x1,1 x1,2 x1,3
x2,1 x2,2 x2,3

]
XT =

 x1,1 x2,1
x1,2 x2,2
x1,3 x2,3


• Mirror image of matrix across the main diagonal
• For scalars,

a = aT

• (AB)T = BT × AT
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Matrix manipula�on

• Matrix addi�on C = A+ B⇒ Ci,j = Ai,j + Bi,j
• Matrix mul�plica�on C = A× B⇒ Ci,j =

∑
k

Ai,k × Bk,j

• Mul�plica�on and addi�on are associa�ve:
(AB)C = A(BC)

(A + B) + C = A + (B + C)

• Mul�plica�on is distribu�ve: A× (B + C) = AB + AC
• Mul�plica�on is not commuta�ve (in general): AB 6= BA
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Matrix Dot Product

• Let us assume Z = X × Y, where X ∈ Rm×n and Y ∈ Rn×p

• Number of columns in X should be equal to number of rows in Y

• zij =
n∑

k=1

xik × ykj
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Iden�ty matrix

• All elements are 0 except for diagonal elements which are 1

• Example, I3 =

 1 0 0
0 1 0
0 0 1


• ∀x ∈ Rn, Inx = x
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Systems of equa�ons

• Consider following equa�ons: 4x1 − 5x2 = −13
−2x1 + 3x2 = 9

• This can be expressed in the form Ax = b where

A =

[
4 −5
−2 3

]
b =

[
−13
9

]
• A1,:x = b1,A2,:x = b2, . . .
• A linear system of equa�ons can have:
• No solu�on
• Many solu�ons
• Exactly one solu�on: this means mul�plica�on by the matrix is an inver�ble func-
�on



x1

x2

A =

[
1 3
2 1

]
x =

[
2
1

]

Ax =

[
1
2

]
× 2 +

[
3
1

]
× 1 =

[
5
5

]
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Linear transforma�on
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Linear transforma�on
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Matrix inversion
• A−1 × A = In
• Solving a system of equa�ons using inverse

Ax = b
A−1Ax = A−1b

Inx = A−1b
x = A−1b

• Numerically unstable, but useful for abstract analysis
• Matrix cannot be inverted if
• More rows than columns
• More columns than rows
• Redundant rows/columns (“linearly dependent”,“low rank”)
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Linear Independence

• Column can be thought of as specifying direc�on from origin
• Each element of x specify how far we should move in each of these di-
rec�on ie, Ax =

∑
xiA:,i

• Formally, this is a linear combina�on of the set of vectors
• Span of set of vectors is the set of all points obtainable by linear com-
bina�on of the original vectors
• Solu�on of Ax = b⇒ Tes�ng whether b is in span of column of A
• Span is known as column space or range of A
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Linear Independence (contd.)
• Ax = b to have solu�on for all b ∈ Rm, column space of Amust be Rm

• Amust have at leastm column ie. n ≥ m
• Consider A has size 3× 2 and b is 3D point
• x will be 2D point
• It traces out 2D plane within R3

• Equa�on will have solu�on if b lies in that plane
• n ≥ m is a necessary condi�on
• Consider 2× 2matrix where both columns are the same
• Column space is just a line in R2
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Linear Independence (contd.)
• A set of vectors is linearly independent if no vectors in the set is a
linear combina�on of other vectors
• No new points will be added if linear combina�on of vectors are added in the set
• Suppose column space is Rm

• Need to have exactlym linearly independent column
• No set of m dimensional vectors can have more than m mutually linearly inde-
pendent column

• A squarematrixwith linearly dependent columns is known as singular
• A matrix to have inverse, Ax = b has at most one solu�on for each
value of b
• A is not square but singular, it is s�ll possible to solve Ax = b. How-
ever, matrix inversion method cannot be used
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Norms

• Measure the size of vector. It is defined as

Lp = ‖x‖p =

(∑
i

|xi|P
)1/p

p ∈ R, p ≥ 1

• Intui�ve meaning: distance of x from the origin
• Norm is any func�on f that sa�sfies
• f(x) = 0

⇒ x = 0
• f(x + y) ≤ f(x) + f(y) (triangle inequality)
• ∀α ∈ R, f(αx) = αf(x)
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Norms (contd)
• L2 norm is known as Euclidean norm
• It is o�en denoted as ‖x‖ instead of ‖x‖2
• Squared L2 norm can be determined by xTx. This is very o�en used
• Deriva�ve of the squared L2 norm depend only on the corresponding element
∂(xTx)

∂xi
=
∂(x21 + . . .+ x2m)

∂xi
• Deriva�ve of L2 depend on en�re vector
∂
√

(xTx)

∂xi
=
∂
√

(x21 + . . .+ x2m)

∂xi
• Square L2 norm is undesirable as it increases very slowly at the origin
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Norms (contd)
• Need to iden�fy elements that are zero and elements that are non-zero
but small
• Need a func�on that grow at the same rate in all loca�ons L1 = ‖x‖ =

∑
i

|xi|

• L1 can be used to differen�ate zero and non-zero elements

• L∞ (max norm) - Absolute value of the elements with the largest mag-
nitude in the vector ‖x‖∞ = maxi |xi|
• Frobenius norm

‖A‖F =
√∑

i,j

A2
i,j

• This is analogous to L2 norm of vector
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Special matrices
• Diagonal matrices — Non-zero diagonal elements and rests are zero.
Formally Di,j = 0, i 6= j
• Iden�ty matrix
• diag(v) — vectors using diagonal elements
• diag(v)x— xi is scaled by vi
• Inversion is easy diag(v)−1=diag([1/v1, 1/v2, . . . , 1/vn]T)
• Not all diagonal matrix be square
• Rectangular diagonal matrix is possible
• Dx— Scaling each element of x
• Concatenate some zero if D is taller
• Discard some last elements if D is wider

• Symmetric matrix — Arises when the entries are generated by a func-
�on of two arguments that does not depend on order
• Distance matrix Ai,j = Aj,i
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Special vectors & matrices
• Unit vector — A vector with unit norm ‖x‖2 = 1
• For vectors x and y, if xTy = 0

• Norm of x or y is zero
• x and y are at 900

• In Rn, at most n vectors may be mutually orthogonal with non-zero
norm
• Vectors orthogonal and have unit norm is known as orthonormal
• Orthogonal matrix — Square matrix, rows are mutually orthonormal,
columns are mutually orthonormal
• ATA = AAT = I⇒ AT = A−1
• Orthonormal matrices are of interest as inverse computa�on is easy
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Eigen decomposi�on
• Similar to prime factoriza�on of integer
• 12 = 2× 2× 3
• 12 is not divisible by 5
• Eigen vector of square matrix A is a non-zero vector such that Av = λv
• λ is a scalar and known as eigen value
• Mostly right eigen vector is considered
• If v is eigen vector, then so is sv
• Usually we look for unit eigen vector

• Suppose A has n linearly independent eigen vector {v1, v2 . . . , vn} with
corresponding eigen value {λ1, λ2, . . . , λn}
• Concatenate all eigen vector, one per column V = [v1, v2 . . . , vn], similarly for λ =
[λ1, λ2, . . . , λn]

• Eigen decomposi�on AV = Vλ

⇒ A = Vdiag(λ)V−1
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x

y
A =

[
1.25 0.75
0.75 1.25

]

v1 =

[
0.707
0.707

]
, λ1 = 2.0

v2 =

[
−0.707
0.707

]
, λ2 = 0.5

Av1 =

[
1.414
1.414

]
Av2 =

[
−0.354
0.354

]
Given ‖x‖ = 1, find Ax
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Eigen decomposi�on (contd)

• Every real symmetric matrix can be decomposed into an expression us-
ing only real valued eigen value and eigen vector

A = QΛQT

• Q is orthogonal matrix correspond of eigen vector of A
• Λ - Diagonal matrix
• Λi,i is associated with eigen vector in column i of Q ie. Q:i

• As Q is orthogonal, A is scaling space by λi in vi

• Real symmetric matrix is guaranteed to have eigen decomposi�on but
not unique
• Two or more eigen vector can have same eigen value
• Sort the entries of Λ in descending order
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Eigen decomposi�on (contd)

• Matrix is said to be singular if any one of the eigen value is 0
• Eigen decomposi�on can be used for op�miza�on for the expression
f(x) = xTAx subject to ‖x‖2 = 1

• Whenever x is equal to an eigen vector of A, f takes on the value of corresponding
eigen value

• Matrices with
• All posi�ve eigen value — Posi�ve definite (xTAx > 0)
• All posi�ve or 0 eigen value — Posi�ve semidefinite (xTAx ≥ 0)
• All nega�ve eigen value — Nega�ve definite (xTAx < 0)
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Singular Value Decomposi�on

• Every real matrix has a singular value decomposi�on but the same is
not true for eigen value decomposi�on
• EVD — A = Vdiag(λ)V−1

• SVD — A = UDVT

• A = m× n, U = m×m, D = m× n, V = n× n
• U,V are orthogonal
• D - diagonal matrix not necessary square
• Diagonal elements of D are known as singular value of A
• U is le� singular vector
• V is right singular vector
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Trace operator & Determinant
• Trace operator

• Tr(A) =
∑

i Ai,i

• ‖A‖F =
√
Tr(AAT)

• Tr(A) = Tr(AT)
• Tr(a) = a

• Tr(ABC) = Tr(CAB) = Tr(BCA)

• Tr(
n∏
i=1

Fi) = Tr(Fn
n−1∏
i=1

Fi)

• Tr(AB) = Tr(BA) where A = m× n and B = n×m

• Determinant of A is denoted as det(A)
• Defined only for square matrix
• Product of all eigen value of the matrix
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Matrix calculus
• Let y = Ax then

∂y
∂z

= A
∂x
∂z

• Let α = yTx then
∂α

∂z
= xT

∂y
∂z

+ yT
∂x
∂z

• Let α = yTAx then
∂α

∂z
= xTAT∂y

∂z
+ yTA

∂x
∂z

• Let α = xTAx then
∂α

∂z
= xT(AT + A)

∂x
∂z

• Let A be symmetric and α = xTAx then
∂α

∂z
= 2xTA

∂x
∂z
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Principal Component Analysis
• We havem points {x1, x2, . . . , xm} in Rn

• Represen�ng these points using a lossy compression

• For each point choose a lower dimension ie. xi ∈ Rn→ ci ∈ Rl

• Target is to find out f such that f(x) = c and a decode func�on g such that x ≈
g(f(x))

• Let g(c) = Dc where D ∈ Rn×l

• PCA constraints the column of D to be orthogonal
• D is not orthogonal matrix
• For unique solu�on columns of D have unit norm

• Generate op�mal code point c∗ for each x
• Minimize distance between x and g(c∗)
• We use L2 norm ie. c∗ = argc min ‖x − g(c)‖2
• We can switch to squared L2 norm c∗ = argc min ‖x − g(c)‖22
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Principal Component Analysis (contd.)
• We need to minimize

(x − g(c))T(x − g(c))

⇒ xTx − xTg(c)− g(c)Tx + g(c)Tg(c)
⇒ xTx − 2xTg(c) + g(c)Tg(c)

• Therefore we have,
c∗ = argcmin(xTx − 2xTg(c) + g(c)Tg(c))
⇒ argcmin(−2xTDc + cTDTDc)
⇒ argcmin(−2xTDc + cTc)

• Op�miza�on problem can be solved by differen�a�ng
∇c(−2xTDc + cTc) = 0

− 2DTx + 2c = 0
c = DTx
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Principal Component Analysis (contd.)

• Op�mal encoding can be done using matrix-vector mul�plica�on
f(x) = DTx

• PCA reconstruc�on r(x) = g(f(x)) = DDTx
• D can be determined by minimizing distance between inputs and re-
construc�on ie.

D∗ = argDmin

√∑
i,j

(
x(i)
j − r(x(i))j

)2
subject to DTD = Il

• To derive D∗, we start by considering l = 1
• D becomes d
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Principal Component Analysis (contd.)

• Simplifying based on the assump�ons
d∗ = argdmin

∑
i

‖x(i) − ddTx(i)‖22 subject to ‖d‖2 = 1

• dTx(i) is scalar, hence ddTx(i) = dTx(i)d = x(i)Tdd

• We get, d∗ = argdmin
∑
i

‖x(i) − x(i)Tdd‖22 subject to ‖d‖2 = 1

• Rewri�ng in terms of single design matrix
d∗ = argdmin ‖X − XddT‖22 subject to ‖d‖2 = 1

• Now we have, argdmin ‖X − XddT‖2F subject to ‖dTd‖ = 1
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Principal Component Analysis (contd.)

• Simplifying,

argdmin ‖X − XddT‖2F

= argdmin Tr
(
(X − XddT)T(X − XddT)

)
= argdmin Tr(XTX − XTXddT − ddTXTX + ddTXTXddT)
= argdmin−2 Tr(XTXddT) + Tr(XTXddTddT)
= argdmin−Tr(XTXddT)
= argdmin−Tr(dTXTXd)

• Op�miza�on problem can be solved by eigen decomposi�on
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Principal Component Analysis (contd.)
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Principal Component Analysis (contd.)
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Principal Component Analysis (contd.)



Image source:learnopencv.com
IIT Patna 37

Principal Component Analysis (contd.)
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Principal Component Analysis (contd.)

• Assemble data matrix A =

 x1 x2 . . . xn
y1 y2 . . . yn
z1 z2 . . . zn


• Calculate mean µx =

1
n

∑
i

xi, µy =
1
n

∑
i

yi, µz =
1
n

∑
i

zi

• Subtract mean from data matrix

M =

 x1 − µx x2 − µx . . . xn − µx
y1 − µy y2 − µy . . . yn − µy
z1 − µz z2 − µz . . . zn − µz


• Calculate covariance matrix C = MMT

• Find eigen vector and value of C
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Overview of Probability
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Probability

• Mathema�cal framework for represen�ng uncertain statements
• Possible source of uncertainty
• Inherent stochas�city
• Incomplete observability
• Incomplete model
• Two broad categories
• Frequen�st
• Ge�ng a card
• Bayesian
• Chance of having flu
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Random Variable

• Variable that can take different values randomly
• Example
• X is random variable that can take value x1 or x2
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Probability Distribu�on
• How likely a random variable is to take on each of its possible states

• Probability Mass Func�on
• Discrete
• Maps state to probability of taking that state
• Joint probability distribu�on
• P(X = x, Y = y)— probability of X taking value x and Y taking value y
• Probability func�on P on X
• The domain of P is set of all possible state of X
• ∀x ∈ X 0 ≤ P(x) ≤ 1
•
∑
x∈X

P(x) = 1

• Example
• Uniform distribu�on with k different states 1/k
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Probability Density Func�on
• Con�nuous variable (p)

• The domain of p is set of all possible state of X
• ∀x ∈ X p(x) ≥ 0

•
∫
x∈X

p(x)dx = 1

• Example
• Uniform distribu�on in [a, b] is represented as X ∼ U(a, b)
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Marginal Probability

• Probability distribu�on over the subset
• Let X, Y be random variables and P(x, y) is known
• P(x) =

∑
y∈Y

P(x, y)

• p(x) =
∫
y∈Y

p(x, y)dy
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Condi�onal Probability
• Probability of some event given that some other event has happened

P(Y = y|X = x) =
P(Y = y, X = x)

P(X = x)

• Chain rule: P(x1x2 . . . xn) = P(x1)
n∏
i=2

P(xi|x1 . . . xi−1)

• P(a, b, c) = P(a|b, c)P(b|c)P(c)
• Independence of random variable
• ∀x ∈ X, y ∈ Y p(X = x, Y = y) = p(X = x)p(Y = y)
• Condi�onal independence
• p(x, y|z) = p(x|z)p(y|z)
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Expecta�on
• Expected value of some func�on with respect to probability distribu-
�on P(x)

• EX∼P[f(x)] =
∑
x

P(x)f(x)

• EX∼p[f(x)] =
∫
x
P(x)f(x)dx

• EX[αf(x) + βg(x)] = αEX[f(x)] + βEX[g(x)]
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Variance & Covariance
• How much the values of a given func�on vary as we sample different
values of x from its probability distribu�on

• Var(f(x)) = E[(f(x)− E[f(x)])2]
• How much two values are linearly related
• Cov(f(x), g(y)) = E [(f(x)− E[f(x)])(g(y)− E[g(y)])]
• It can be posi�ve or nega�ve
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Bayes’ rule

• Suppose P(y|x) and P(x) known and need to find out P(x|y)

P(x|y) = P(x)P(y|x)
P(y)

• Now P(y) can be found out from

P(y) =
∑
x

P(y|x)P(x)
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Problems
• Suppose that we have two bags each containing black and white balls.
One bag contains three �mes as many white balls as blacks. The other
bag contains three �mes as many black balls as white. Suppose we
choose one of these bags at random. For this bag we select five balls
at random, replacing each ball a�er it has been selected. The result is
that we find 4 white balls and one black. What is the probability that
we were using the bag with mainly white balls?
• Given the following sta�s�cs, what is the probability that a person has
cancer if he has a posi�ve pathological result?
• One percent of people over 50 have this cancer.
• Ninety percent of peoplewho have this cancer test posi�ve on pathological report.
• Eight percent of people will have false posi�ves.
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Informa�on theory
• Quan�fying how much informa�on is present in a signal
• The sun rises in the east. — uninforma�ve
• There was a solar eclipse this morning. — informa�ve
• Therefore, we would like to quan�fy
• Likely event should have low informa�on content
• Events guaranteed to happen should have no informa�on
• Less likely event should have higher informa�on content
• Independent event should have addi�ve informa�on
• Informa�on of an event X = x be I(x) = − log P(x)
• Natural logarithm, with base e
• Unit of I(x) is nat
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Gaussian distribu�on

• Also, known as Normal Distribu�on

N (x;µ, σ2) =
√

1
2πσ2

exp

(
− 1
2σ2

(x− µ)2
)
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Mul�variate normal distribu�on

• Defined as

N (x;µ,Σ) =

√
1

(2π)ndet(Σ)
exp

(
− 1
2
(x − µ)TΣ−1(x − µ)

)

• µ—mean of the distribu�on
• Σ — Covariance matrix of the distribu�on
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