
IIT Patna 1

Embedded Systems

Arijit Mondal
Dept. of Computer Science & Engineering
Indian Ins�tute of Technology Patna
arijit@iitp.ac.in

IIT Patna 2

Scheduling

IIT Patna 3

Introduc�on
• In general there will be more number of tasks than the number of processors
• Need a scheduler to run the tasks effec�vely
• Tasks may have precedence constraints
• Tasks may have hard �ming constraints (Real �me systems)
• Typically referred as deadline
• Scheduling techniques are applicable in different domains

IIT Patna 4

Scheduler
• Decides what task to execute next when faced with a choice in the execu�on of con-
current programs
• Mul�processor scheduler needs to decide which processor as well (Processor assignment)
• Scheduling decision
• Assignments - which processor should execute
• Ordering - in what order each processor should execute
• Timing - the �me at which each task executes
• Above parameters can be decided in design �me (sta�c scheduler) or at run �me
(dynamic scheduler)

IIT Patna 5

Scheduler (contd.)
• Sta�c scheduler - decides the parameter in design �me
• Does not require semaphore or lock in general
• Predic�ng �me for modern processor is extremely difficult (out-of-order execu�on)
Dynamic scheduler
• Performs all decision at run �me
• Online vs Offline
• Preemp�on vs Non-preemp�on
• Blocked - wai�ng for mutual exclusion lock

IIT Patna 6

Task model
• Arrival of tasks - scheduler needs to know the task before scheduling
• Periodic, aperiodic, sporadic
• Execu�on of tasks - preemp�ve vs non-preemp�ve
• Precedence constraints
• Pre-condi�on
• Release �me, Start �me, Finish �me, Execu�on �me, Deadline
• Hard real �me scheduling, So� real �me scheduling
• Priority - fixed, dynamic

image source: Introduc�on to Embedded Systems book
IIT Patna 7

Execu�on of task

o
i

ei

ri si fi di

i

IIT Patna 8

Comparing scheduler
• Goal of any scheduler is to find any feasible schedule that is fi ≤ di for all tasks
• A scheduler that yields feasible schedule for a task set when there is a feasible sched-
ule is said to be op�mal with respect to feasibility
• U�liza�on - Percentage of �me that the processor spends execu�ng tasks
• Most popular metric
• Maximum lateness - It is defined as Lmax = max(fi − di)
• For feasible schedule it will be 0 or nega�ve
• Total comple�on �me / Makespan - It is defined asM = max

T
fi −min

T
ri

IIT Patna 9

Implementa�on of scheduler
• Scheduler can be part of compiler or code genera�on
• Decision made at design �me
• Scheduler can be part of opera�ng system or kernel
• Decision made at run �me
• It can be both as well
• For non-preemp�ve scheduling procedure is invoked when a task completes
• For preemp�ve scheduling procedure is invoked when several things occur
• A �mer interrupt occurs
• An I/O interrupt occurs
• AN OS service is invoked
• Task a�empts to get mutex
• A task tests semaphore

IIT Patna 10

Rate monotonic
• n tasks execute periodically
• Let pi be the period for ith task and ri be the release �me
• Deadline for jth execu�on ri + j× pi
• Fixed priority scheduling
• Scheduling strategy: higher priority to a task that has smaller period
• Op�mal with respect to feasibility for fixed priority

image source: Introduc�on to Embedded Systems book
IIT Patna 11

Rate monotonic: Example

e
2

p
2

e
1

p
1

τ1,1 τ1,2

τ2,2τ2,1

τ1,7τ1,6τ1,5τ1,4τ1,3τ1

τ2

image source: Introduc�on to Embedded Systems book
IIT Patna 12

Rate monotonic: Example

e
2

p
2

p
1

+

τ1

τ2

τ1

τ2

τ1

τ2

τ1

τ2

τ1

τ2

o
2

image source: Introduc�on to Embedded Systems book
IIT Patna 13

Rate monotonic: Response �me
• Response �me of the lower priority task is
worst when its star�ng �me matches that of
higher priority tasks
• Worst case scenario occurs when all start at the
same �me

image source: Introduc�on to Embedded Systems book
IIT Patna 14

Rate monotonic: Op�mality

e
2

p
2

e
1

p
1

τ1

τ2

image source: Introduc�on to Embedded Systems book
IIT Patna 15

Rate monotonic: Op�mality

e
2

p
2

e
1

p
1

τ1

τ2

IIT Patna 16

Rate monotonic: U�liza�on
• May not achieve 100% u�liza�on

• U�liza�on is defined as µ =
n∑
i=1

ei
pi

• U�liza�on bound µ ≤ n
(
2

1
n − 1

)
• For n = 2maximum u�liza�on can be achieved as 82.8%
• When n is very large, maximum u�liza�on can be achieved as 69.3%

IIT Patna 17

Earliest Deadline Due
• Given a set of non-preemp�ve non-repea�ng tasks with deadlines and no prece-
dence constraints
• Executes tasks in the same order as their deadline
• EDD is op�mal in a sense that minimizes maximum lateness
• Does not support arrival of tasks

IIT Patna 18

Earliest Deadline First
• Given a set of n independent tasks T = {τ1, τ2, . . . , τn} associated with deadlines
d1, d2, . . . , dn and arbitrary arrival �me
• Scheduling strategy: at any instant executes the task with earliest deadline among
all arrival tasks
• EDF is op�mal in a sense that minimizes maximum lateness
• Dynamic priority scheduling algorithm
• If a task repeatedly executed, it may be assigned different priori�es
• Complex to implement
• More expensive to implement than RM but performance is superior

IIT Patna 19

RM vs EDF
• RM is op�mal with fixed priority
• EDF is op�mal with dynamic priority
• Also minimizes maximum lateness
• Results in less preemp�on, less overhead
• Any EDF schedule with less than 100% u�liza�on can tolerate increase in execu�on
�me and/or reduc�on in period and s�ll feasible

image source: Introduc�on to Embedded Systems book
IIT Patna 20

EDF with precedence

0

1

d1= 2

d2= 5

d3= 4
d6= 6

d5= 5

d4= 3

642

3 2 4 5 6EDF

1 2 4 3 5 6LDF

1 2 4 3 5 6EDF*

IIT Patna 21

LDF, EDF*
• Latest Dedline First (LDF)
• Construct the scheduling backward
• The last task is chosen first and which has latest deadline
• Does not support arrival of tasks
• EDF*
• Support arrival of tasks and minimizes maximum lateness
• For a task i, letD(i) be the set of task execu�on that immediately depend on i in precedence
graph

• Modified deadline d′i = min

(
di, min

j∈D(i)
(d′j − ei)

)

image source: Introduc�on to Embedded Systems book
IIT Patna 22

Scheduling and mutual exclusion
• Priority inversion
• Priority is based preemp�ve scheduler enables high priority task
• Using mutual exclusion, a task may become blocked

0 2 4 6 8 10

task 1

task 2

task 3

ac
q

u
ir

e
lo

ck

p
re

em
p

t

b
lo

ck

p
re

em
p

t

re
le

as
e

d
o

n
e

task 1 blocked

image source: Introduc�on to Embedded Systems book
IIT Patna 23

Priority inheritance protocol
• When a task blocks a�emp�ng to acquire a lock, then the task that holds the lock
inherits the priority of the blocked task

0 2 4 6 8 10

task 1

task 2

task 3

ac
q

u
ir

e
lo

ck

p
re

em
p

t

b
lo

ck

re
le

as
e

d
o

n
e

task 1 blocked

at priority of 1

d
o

n
e

task 2 preempted

image source: Introduc�on to Embedded Systems book
IIT Patna 24

Priority ceiling protocol
• Every lock is assigned a priority ceiling equal to the priority of the highest priority
task that can lock it

0 2 4 6

task 1

task 2

ac
q

u
ir

e
lo

ck
 a

p
re

em
p

t

block on a

acquire lock b

a

b

block on ba

0 2 4 6

task 1

task 2

lo
ck

 a

p
re

em
p

t

prevented from locking b
by priority ceiling protocol

a

b

a b

unlock b, then a

a

image source: Introduc�on to Embedded Systems book
IIT Patna 25

Mul�processor scheduling
• Scheduling on a single processor is hard, scheduling on mul�processor is harder
• Scheduling of fixed finite set of tasks with precedence on a finite number of proces-
sors with goal to minimize makespan
• NP-Hard problem
• Hu level scheduling algorithm
• Assigns priority to each task based on the level
• Greatest sum of execu�on �mes of tasks on a path in the precedence graph from τ to
another task with no dependents

IIT Patna 26

Scheduling anomalies
• Mul�processor scheduling are non-monotone
• Improvement in local performance can degrade over all performance
• Richard’s anomalies
• If a task set with fixed priori�es, execu�on �mes, and precedence constraints is scheduled on
a fixed number of processors in accordance with the priori�es, then increasing the number
of processors, reducing execu�on �mes, or weakening precedence constraints can increase
the schedule length.

image source: Introduc�on to Embedded Systems book
IIT Patna 27

Mul�processor scheduling

0 4 8 12 16

proc1

proc2

proc3

2 6 10 14

3

2

1

4

9

5 7

86

time

e1 = 3

e2 = 2

e3 = 2

e4 = 2

e9 = 9

e8 = 4

e7 = 4

e6 = 4

e5 = 4

image source: Introduc�on to Embedded Systems book
IIT Patna 28

Richard’s anomalies: Reducing execu�on �me

0 4 8 12 16

proc1

proc2

proc3

2 6 10 14

3

2

1

4 9

5

7

8

6

time

image source: Introduc�on to Embedded Systems book
IIT Patna 29

Richard’s anomalies: More processor

0 4 8 12 16

proc1

proc2

proc3

2 6 10 14

3

2

1

4

95

7

8

6

time

proc4

image source: Introduc�on to Embedded Systems book
IIT Patna 30

Richard’s anomalies: Removing precedence

0 4 8 12 16

proc1

proc2

proc3

2 6 10 14

3

2

1

4

9

5

7

8

6

time

image source: Introduc�on to Embedded Systems book
IIT Patna 31

Anomaly due to mutex

0 4 8 12

proc1

proc2

2 6 10

3

1

4 5

time

2

proc1

proc2 3

1

4 5

2

0 4 8 122 6 10
time

