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Introduction

• The goal of verification

• To ensure 100% correct in functionality and timing
• Spend 50∼70% of time to verify a design

• Functional verification

• Simulation
• Formal proof

• Timing verification

• Dynamic timing simulation (DTS)
• Static timing analysis (STA)
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Verification vs Test

Verification

• Verifies correctness of design i.e., check
if the design meets the specifications.

• Simulation or formal methods.
• Performed once prior to

manufacturing.
• Required for reliability of design.

Test

• Checks correctness of manufactured
hardware.

• Two-stage process:

• Test generation: CAD tools
executed once during design for
ATPG

• Test application: TPs tests applied
to ALL hardware samples

• Test application performed on every
manufactured device.

• Responsible for reliability of devices.
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Simulation

• Need to drive the circuit with the stimulus
• Exhaustive simulation

• Drive the circuit with all possible stimulus

• Non-exhaustive simulations

• Drive the circuit with selected stimulus
• To find appropriate subset is a complex problem
• May not cover all cases

• Number of test cases may be exponential
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Verification of Combinational Circuits

a

b

sel Y1

a

sel Y2

b

• Are Y1 and Y2 equivalent?

• Y1 = (a ∧ ¬sel) ∧ (b ∧ sel)
• Y2 = (a ∧ ¬sel) ∨ (b ∧ sel)

• Canonical structure of Binary Decision Diagram can be exploited to compare Boolean
functions like Y1 & Y2
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Verification of Sequential Circuits

Arbiter

RR
r1

r2

g1

g2

• Properties span across cycle boundaries

• Example: Two way round robin arbiter

• If the request bit r1 is true in a cycle then the grant bit g1 has to be true within the next
two clock cycles

• Need temporal logic to specify the behavior
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Verification of Sequential Circuits

Arbiter

RR
r1

r2

g1

g2

r1(0)

r2(0)

g1(0)

g2(0)

T=2T=1T=0

r1(1)

r2(1)

g1(1)

g2(1)

r1(2)

r2(2)

g1(2)

g2(2)

• If the request bit r1 is true in a cycle then the grant bit g1 has to be true within the
next two clock cycles

• ∀t[r1(t)→ g1(t + 1) ∨ g1(t + 2)]

• In propositional temporal logic time (t) is implicit

• always r1 → (next g1) ∨ (next next g1)
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Temporal logic

• The truth value of a temporal logic is defined with respect to a model.

• Temporal logic formula is not statically true or false in a model.

• The models of temporal logic contain several states and a formula can be true in some
states and false in others.

• Example:

• I am always happy.
• I will eventually be happy.
• I will be happy until I do something wrong.
• I am happy.
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Kripke Structure

S0 S1 S2

S3 S4

100 110 001

010 011

p

q

p,q r

q,r

• M = (AP , S , S0,T , L)

• AP — Set of atomic proposition
• S — Set of states
• S0 — Set of initial states
• T — Total transition relation (T ⊆ S × S)
• L — Labeling function (S → 2AP)
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Path

• A path π = s0, s1, . . . in a Kripke structure is a sequence of states such that
∀i , (si , si+1) ∈ T

• Sample paths

• S0,S1,S2,S4, S1, . . .
• S0,S3,S4,S0, . . .
• S0,S1,S4,S1, . . .
• π = s0, s1, . . . , sk︸ ︷︷ ︸

prefix of πk in π

, sk+1 . . .

• π = s0, s1, . . . , sk , sk+1 . . .︸ ︷︷ ︸
suffix of πk in π
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Temporal operators

• Two fundamental path operators
• Next operator

• Xp — property p holds in the next state

• Until operator

• p U q — property p holds in all states upto the state where property q holds

• Derived operators
• Eventual/Future operator

• Fp — property p holds eventually (in some future states)

• Always/Globally operator

• Gp — property p holds always (at all states)

• All these operators are interpreted over the paths in Kripke structure under consider-
ation

• All Boolean operators are supported by the temporal logics
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The next operator (X)

Xp

p holds

• p holds in the next state of the path

• Formally

• π |= Xp iff π1 |= p
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The until operator (U)

pUq

p holds q holds

• q holds eventually and p holds until q holds

• Formally

• π |= p U q iff ∃k such that πk |= q and ∀j, 0 ≤ j < k we have πj |= p
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The eventual operator (F)

p holds

Fp

• p holds eventually (in future)

• Formally

• π |= Fp iff ∃k such that πk |= p
• This can be written as true U p
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The always operator (G)

G p

p holds

• p holds always (globally)

• Formally

• π |= Gp iff ∀k we have πk |= p
• This can be written as ¬(true U¬p) or ¬F¬p
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Branching Time Logic

• Interpreted over computation tree

a,b

b,c c

a,b

b,c c

a,b c c
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Path Quantifier

• A: “For all paths ...”

• E: “There exists a path ...”
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Universal Path Quantification

p p

AX p

p

p

p

p

pp p

AG p

In all the next states p holds. Along all the paths p holds
forever.
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Universal Path Quantification

AF p

p p

p

A(pUq) p

p q

qq

Along all the paths p holds
eventually.

Along all the paths p holds
until q holds.
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Existential Path Quantification

p

EX p

p

p

pEG p

There exists a next state
where p holds.

there exists a path along
which p holds forever.
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Existential Path Quantification

EF p

p

E(pUq) p

p

q

There exists a path along
which p holds eventually.

There exists a path along
which p holds until q holds.
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Duality between Always & Eventual operators

• Gp = p ∧ (next p) ∧ (next next p) ∧ (next next next p) . . .

= ¬(¬(p ∧ (next p) ∧ (next next p) ∧ (next next next p) ∧ . . .))

applying De Morgan’s law

= ¬(¬p ∨ (next ¬p) ∨ (next next ¬p) ∨ (next next next ¬p) ∨ . . .)
= ¬(F¬p)

• Therefore we have

• Gp = ¬F¬p
• Fp = ¬G¬p
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Computation Tree Logic (CTL)

• Syntax:
• Given a set of Atomic Propositions (AP):

• All Boolean formulas of over AP are CTL properties
• If f and g are CTL properties then so are ¬f , AXf , A(f U g), EXf and E (f U g),

• Properties like AFp, AGp, EGp, EFp can be derived from the above

• Semantics:

• The property Af is true at a state s of the Kripke structure iff the path property f holds
on all paths starting from s

• The property Ef is true at a state s of the Kripke structure iff the path property f holds
on some path starting from s
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Nested properties in CTL

• AX AGp

• From all the next state p holds forever along all paths

• EX EFp

• There exist a next state from where there exist a path to a state where p holds

• AG EFp

• From any state there exist a path to a state where p holds

p p

p p p p

AX AGp

p

EX EFp

p

p p p p

AG EFp
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CTL example

S

req

req req req

gr gr gr req gr gr

gr gr

• From S the system always makes a request in future:

AF req

• All requests are eventually granted: AG (req → EF gr)

• Sometimes requests are immediately granted: EF (req → EX gr)

• Requests are held till grant is received: AG (req → A(req U gr))
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Real Time properties

• Real time systems

• Predictable response time are necessary for correct operation
• Safety critical systems like controller for aircraft, industrial machinery are a few examples

• It is difficult to express complex timing properties
• Simple: “event p will happen in future”

• Fp

• Complex: “event p will happen within at most n time units”

• p ∨ (Xp) ∨ (XXp) ∨ . . . ([XX . . . n times]p)
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Bounded Temporal Operators

• Specify real-time constraints

• Over bounded traces

• Various bounded temporal operators

• G[m,n]p — p always holds between mth and nth time step

• F[m,n]p — p eventually holds between mth and nth time step

• X[m]p — p holds at the mth time step

• p U[m,n] q — q eventually holds between mth and nth time step and p holds until that
point of time
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Examples

[2,4]G       p

0 1 2 3 4

p holds

• p holds always between 2nd and 4th time step
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Examples

F       p

0 1 2 3 4

[2,4]

p holds

• p holds eventually between 2nd and 4th time step
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Examples

0 1 2 3 4

X   p3

p holds

• p holds in the 3rd time step
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Examples

0 1 2 3 4

[2,4]pU       q

p holds q holds

• q holds eventually between 2nd and 4th time step and p holds until q holds
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Timing properties

• Whenever request is recorded grant should take place within 4 time units

• AG (posedge(req)→ AF[0,4] posedge(gr))

• The arbiter will provide exactly 64 time units to high priority user in each grant

• AG (posedge(hpusing)→
A(¬negedge(hpusing)U[64,64] negedge(hpusing)))
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Formal Verification

extraction

State machine

Specification

A(pUq)
Model Checker

No

Yes
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Formal Property Verification

• The formal method is called “Model Checking”
• The algorithm has two inputs

• A finite state state machine (FSM) that represents the implementation
• A formal property that represent the specification

• The algorithm checks whether the FSM “models” the property

• This is an exhaustive search of the FSM to see whether it has any path / state that refutes the
property
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Example: Explicit State Model

S2 b

S0

a

S1

a,b

S3

a
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Example: EX

S2 b

S0

a

S1

a,b

S3

a

EXa
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Example: EX

S2 b

S0

a

S1

a,b

S3

a

EXa

S0

a

S1

a,b

S2 b

S3

a
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Example: AX

S2 b

S0

a

S1

a,b

S3

a

AXa
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Example: AX

S2 b

S0

a

S1

a,b

S3

a
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a,b

S2 b

S3

a
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Example: EG

S2 b

S0

a

S1

a,b

S3

a

EGa
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Example: EG
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a,b

S3

a

EGa

S0

a

S1

a,b

S3
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Example: AG

S2 b

S0

a

S1

a,b

S3

a

AGa
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Example: AG

S2 b

S0

a

S1

a,b

S3

a

AGa

S3

a
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Example: AU

S2 b

S0

a

S1

a,b

S3

a

A(aU b)
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Example: AU

S2 b

S0

a

S1

a,b

S3

a

A(aU b)

S0

a

S1

a,b

S2 b
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Symbolic Representation

• Represents set of transition as function δ(old, new)

• Yields 1 if there is a transition from old to new
• Can be represented as Boolean function by encoding the states with Boolean variables

00 01

1011
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Breadth First Reachability

00 01

1011

00

R0

01

R1

11

R2

• Ri is the set of states that can be reached in i transitions

• Reaches fix point when Rn = Rn+1

• Fix point always exists as it has finite number of states
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CTL Model Checking

• It checks whether a given CTL formula f holds on a given Kripke structure M i.e.,
M |= f

• Need to have modalities for EX , EU and EG
• Other modalities can be expressed using EX , EU and EG

• AF f ≡ ¬EG ¬f
• AG f ≡ ¬EF ¬f
• A(f U g) ≡ (¬EG ¬g) ∧ (¬E [¬g U (¬f ∧ ¬g)])

• Basic procedure

• The set Sat(f) of all states satisfying f is computed recursively
• M |= f if and only if S0 ⊆ Sat(f )
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CTL Model Checking: EXf

s Sat(f)

• Post(s) = {s′ ∈ S | (s, s′) ∈ T}
• Sat(EXf) = {s ∈ S |Post(s) ∩ Sat(f) 6= ∅}
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CTL Model Checking: EXf

function CheckEX(f)

1. Sf = {s ∈ S | f ∈ L(s)}
2. while Sf 6= ∅
3. Choose s ∈ Sf

4. Sf = Sf − {s}
5. for all t such that (t, s) ∈ T
6. if f 6∈ L(t)
7. L(t) = L(t) ∪ {EXf}
8. endif
9. end for

10. end while
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CTL Model Checking: EFp

f0 = p

f1 = p∨
EXf0

f2 = p∨
EXf1

f3 = p ∨ EXf2

Least Fix Point
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CTL Model Checking: f = EF p

• Given a model M = 〈AP , S , S0,T , L〉 and Sp the set of states satisfying p in M

function CheckEF(Sp)
Q ← φ;
Q ′ ← Sp;

while Q 6= Q ′ do
Q ← Q ′

Q ′ ← Q ∪ {s | ∃ s ′ [T (s, s ′) ∧ Q(s ′)]}
end while

Sf ← Q ′

return Sf
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CTL Model Checking: EFp

function CheckEF(p)
1. Sp = {s ∈ S | p ∈ L(s)}
2. for all s ∈ Sp do L(s) = L(s) ∪ {EFp}
3. while Sp 6= ∅
4. Choose s ∈ Sp

5. Sp = Sp − {s}
6. for all t such that (t, s) ∈ T
7. if {EFp} 6∈ L(t)
8. L(t) = L(t) ∪ {EFp}
9. Sp = Sp ∪ t

10. endif
11. end for
12. end while
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Example: g = EF
(
(a⊕ c) ∧ (a⊕ b)

)

S2b,c

S0

a,b,c

S1 a,b

S3

a

S4

b

S5 a,c

S6

c

S7

∅

Let p = ((a⊕ c) ∧ (a⊕ b)) Sp = {} {} |= g
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S2b,c

S0

a,b,c

S1 a,b

S3

a

S4

b
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CTL Model Checking: f = EG p

• Given a model M = 〈AP , S , S0,T , L〉 and Sp the set of states satisfying p in M

function CheckEG(Sp)
Q ← φ; Q ′ ← Sp;

while Q 6= Q ′ do
Q ← Q ′

Q ′ ← Q ∩ {s | ∃s ′[T (s, s ′) ∧ Q(s ′)]}
end while

Sf ← Q ′

return Sf
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CTL Model Checking: EGp

function CheckEG(p)
1. Sp = {s ∈ S | p ∈ L(s)}
2. SCC = {C |C is nontrivial SCC of Sp}
3. R =

⋃
C∈SCC

{s | s ∈ C}

4. for all s ∈ R do L(s) = L(s) ∪ {EGp}
5. while R 6= ∅
6. Choose s ∈ R
7. R = R− {s}
8. for all t such that (t, s) ∈ T and t ∈ Sp
9. if {EGp} 6∈ L(t)

10. L(t) = L(t) ∪ {EGp}
11. R = R ∪ {t}
12. endif
13. end for
14. end while
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S2

Sp = {S0,S1,S2}

S4

Sp = {S0,S1,S2,S4}Find SCC using Sp. Sp = {S0,S1,S2,S4}

S4

S1

R = {S0,S2}

S0g

S2

g
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CTL Model Checking: E(p U q)

f0 = q

f1 = q∨
(p ∧ EXf0)

f2 = q∨
(p ∧ EXf1)

f3 = q ∨ (p ∧ EXf2)

Least Fix Point
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CTL Model Checking: E(p U q)

function CheckEU(p,q)
1. Sq = {s ∈ S | q ∈ L(s)}
2. for all s ∈ Sq do L(s) = L(s) ∪ {E(p U q)}
3. while Sq 6= ∅
4. Choose s ∈ Sq

5. Sq = Sq − {s}
6. for all t such that (t, s) ∈ T
7. if {E(p U q)} 6∈ L(t) and p ∈ L(t)
8. L(t) = L(t) ∪ {E(p U q)}
9. Sq = Sq ∪ {t}

10. endif
11. end for
12. end while
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Nested CTL query

EF(p ∧ AG¬q)

p ∧ AG¬q

EF

p AG¬q

¬q

AG

∧
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Verification of RTCTL query

• A(p U≤k q) ≡ q ∨ (p ∧ AX A(p U≤k−1 q)) if k > 1

• E(p U≤k q) ≡ q ∨ (p ∧ EX E(p U≤k−1 q)) if k > 1

• A(p U≤0 q) ≡ q ≡ E(p U≤0 q)

• Similar fix point characterization of CTL modalities can be used

• For qualative CTL queries k = |S|
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RTCTL Model Checking: f = E(p U≤k q)

function CheckEU(p,q,k)
1. N0

f = {s ∈ S | q ∈ L(s)}
2. for all s ∈ N0

f do L(s) = L(s) ∪ {E(p U≤k q)}
3. j = 0;
4. while j < k
5. TEMP = Nj

f

6. while Nj
f 6= ∅

7. Choose s ∈ TEMP; TEMP = TEMP− {s}
8. for all t such that (t, s) ∈ T
9. if {E(p U≤k q)} 6∈ L(t) and p ∈ L(t)

10. L(t) = L(t) ∪ {E(p U≤k q)}; Nj+1
f = Nj+1

f ∪ {t}
11. endif
12. end for
13. end while
14. j = j + 1;
15. end while



IIT Patna 59

Verification of RTCTL query

• E(p U[a,b] q) ≡ p ∧ (EX E(p U[a−1,b−1] q)) if a > 0 and b > 0

• E(p U[0,b] q) ≡ q ∨ (p ∧ EX E(p U[0,b−1] q)) if b > 0

• E(p U[0,0] q) ≡ q

• Steps:
• Compute set of states where p is true for a steps

• If fix point is reached before a steps, skip to the second case

• Compute set of states where E(p U q) is true for b steps

• If fix point is reached before (b-a) steps, skip to the third case
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Complexity

• Linear in the size of the model

• Linear in the size of the CTL formula

• Complexity is O(|F| ×M)

• Model size — M
• Formula size — |F|


