Modeling: Discrete dynamics

Arijit Mondal
Dept. of Computer Science \& Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Introduction

- Embedded systems can include both discrete and continuous dynamics
- Continuous dynamics can be modeled by ordinary differential equation
- State machines are used to model discrete behavior of the systems
- A system operates in a sequence of discrete steps
- Example
- Number of cars in a parking area

Car parking

- Arrival detector, departure detector

- Similar to integrator
- Input is not continuous $u: R \rightarrow\{$ absent, present $\}$
- Also known as pure signal

Event

- Systems are event triggered
- Sequence of steps known as reaction
- A particular reaction will observe the values of the inputs at a particular time and calculate output values for the same time
- An actor has input ports $P=\left\{p_{1}, p_{2}, \ldots, p_{N}\right\}$
- V_{p} denotes the type of p (values may be received)
- At each reaction a variable can take $p \in V_{p} \cup\{$ absent $\}$

Notion of state

- State of a system is its condition at a particular point of time
- State affects how the system reacts to inputs
- Integrator : discrete vs continuous
- Discrete modes with finite state space are called finite state machine

Finite State Machine

- A state machine is a model with discrete dynamics that maps valuations of the inputs to outputs where the map may depend on its current state

Finite State Machine: example

inputs: up, down: pure outputs: count: $\{0,1, \ldots, M\}$

Transition

- It governs the discrete dynamics of FSM
- Guard/Action
- Guard determines whether the transition may take on a reaction
- Action specifies the output for each reaction
- If p_{1} and p_{2} are inputs to FSM
- true - transition is always enabled
- p_{1} - transition is enabled if p_{1} is present
- $\neg p_{1}$ - transition is enabled if p_{1} is absent
- $p_{1} \wedge p_{2}$ - transition is enabled if both p_{1} and p_{2} are present
- $p_{1} \vee p_{2}$ - transition is enabled if either p_{1} or p_{2} are present

Default transition

Finite State Machine: example

FSM Definition

- It is a tuple 〈States, Inputs, Outputs, Update, InitialState〉
- States - finite number of states
- Inputs - set of input valuations
- Outputs - set of output valuations
- Update - States \times Inputs \rightarrow States \times Outputs, mapping a state and input valuation to a next state and a output valuation
- InitialState - start state

FSM example

- States $=\{0,1,2, \ldots, M\}$
- Inputs $=\{u p$, down $\} \rightarrow\{$ present, absent $\}$
- Outputs $=\{$ count $\} \rightarrow\{0,1,2, \ldots, M\}$
- InitialState $=0$
- update $(s, i)=\left\{\begin{array}{l}(s+1, s+1) \text { if } s<M \wedge u p=\text { present } \wedge \text { down }=\text { absent } \\ (s-1, s-1) \text { if } s>0 \wedge u p=\text { absent } \wedge \text { down }=\text { present } \\ (s, a b s e n t) \text { otherwise }\end{array}\right.$ inputs: up, down: pure outputs: count: $\{0,1, \ldots, M\}$

A few terminologies

- Determinacy - If for each state there is at most one transition enabled by each input value
- Update function is not one to many mapping
- Same input will produce same output always
- Receptiveness - If for each state there is at least one transition possible on each input symbol
- FSM is receptive as 'update' is a function, not a partial function
- Chattering - A system oscillates between two states rapidly
- Stuttering - A system remains in the state due to absence of inputs and outputs
- Hysteresis - Dependence of the state of a system on its history.

Mealy vs Moore machine

- Mealy machine
- Named after George Mealy
- Characterized by producing outputs when a transition is taken
- Moore machine
- Named after Edward Moore
- Produces the output when the machine is in a state
- Output is function of state only
- Strictly causal
- A Mealy machine can be converted into Moore machine
- A Moore machine can be converted into Mealy machine
- Mealy machine is preferred because of compactness and output is instantaneous with respect to inputs

Moore machine: example

inputs: up, down: pure
outputs: count: $\{0,1, \ldots, M\}$

Extended FSM

variable: $c:\{0,1, \ldots, M\}$
inputs: up, down: pure outputs: count: $\{0,1, \ldots, M\}$

$$
\text { up } \wedge \neg \text { down } \wedge c<M / c+1
$$

Extended FSM

Example: pedestrian crosswalk

- It starts with red
- It moves to green after 60 seconds
- It will remain in green if there is no pedestrian
- If the light goes to green, then it remains there at least for 60 seconds
- If there is a pedestrian, light becomes yellow if it has been green for more than 60 seconds
- The yellow light will remain for 5 seconds before it turns to red

Example: pedestrian crosswalk

green

pending
yellow

Example: pedestrian crosswalk

variable: count : $\{0,1, \ldots, 60\}$
input: pedestrian : pure
output: $\operatorname{sig} Y, \operatorname{sig} G, \operatorname{sig} R$: pure
green

pending
yellow

Example: pedestrian crosswalk

variable: count : $\{0,1, \ldots, 60\}$
input: pedestrian : pure
output: $\operatorname{sig} Y, \operatorname{sig} G, \operatorname{sig} R$: pure

green

pending
yellow

Example: pedestrian crosswalk

variable: count : $\{0,1, \ldots, 60\}$ input: pedestrian : pure
output: $\operatorname{sig} Y, \operatorname{sig} G, \operatorname{sig} R$: pure

green

pending
yellow

Example: pedestrian crosswalk

variable: count : $\{0,1, \ldots, 60\}$ input: pedestrian : pure
output: $\operatorname{sig} Y, \operatorname{sig} G, \operatorname{sig} R$: pure

Example: pedestrian crosswalk

variable: count: $\{0,1, \ldots, 60\}$ input: pedestrian : pure

Example: pedestrian crosswalk

variable: count : $\{0,1, \ldots, 60\}$ input: pedestrian : pure

Example: pedestrian crosswalk

variable: count : $\{0,1, \ldots, 60\}$ input: pedestrian : pure
output: $\operatorname{sig} Y, \operatorname{sig} G, \operatorname{sig} R$: pure

Example: pedestrian crosswalk

variable: count : $\{0,1, \ldots, 60\}$ input: pedestrian : pure

Example: pedestrian crosswalk

variable: count : $\{0,1, \ldots, 60\}$ input: pedestrian : pure

Example: pedestrian crosswalk

variable: count : $\{0,1, \ldots, 60\}$ input: pedestrian : pure

Example: pedestrian crosswalk

variable: count: $\{0,1, \ldots, 60\}$ input: pedestrian : pure

Extended FSM

- The state of an extended machine includes not only the information about which discrete state the machine is in, but also what values any variables have.
- Suppose there is, n discrete states, m variables each of which can take one of p possible values
- Size of the state space will be \mid States $\mid=n p^{m}$

Example

inputs: up, down: pure
outputs: count: $\{0,1, \ldots, M\}$

variable: $c:\{0,1, \ldots, M\}$
inputs: up, down: pure outputs: count: $\{0,1, \ldots, M\}$

Example: infinite states

$$
\neg u p \wedge d o w n \wedge c>0 / c-1
$$

$$
c:=c-1
$$

variable: c: $\{0,1, \ldots, M\}$ inputs: up, down: pure outputs: count: $\{0,1, \ldots, M\}$

Pedestrian crosswalk: state count

variable: count : $\{0,1, \ldots, M\}$
input: pedestrian : pure
output: $\operatorname{sig} Y, \operatorname{sig} G, \operatorname{sig} R$: pure

Nondeterminism

- A state machine interacts with the environment
- Modeling of pedestrian
- If for any state, two distinct transitions with guards that can evaluate to true in the same reaction, then the machine is nondeterministic

Nondeterministic FSM

- It is a tuple 〈States, Inputs, Outputs, possibleUpdates, InitialStates〉
- States - finite number of states
- Inputs - set of input valuations
- Outputs - set of output valuations
- possibleUpdates - States \times Inputs $\rightarrow 2^{\text {States } \times \text { Outputs }}$, mapping a state and input valuation to a next state and a set of possible (next state, output) pairs. Also known as Transition Relation
- InitialStates - start states

Nondeterministic FSM

output: $\operatorname{sig} R, \operatorname{sig} G, \operatorname{sig} Y$: pure

Uses of nondeterminism

- Environment modeling - to hide irrelevant details
- Specifications - system requirements imposes constraints on some features while the others are unconstrained
- Probabilistic FSM is different from Non-deterministic FSM
- In probabilistic FSM, every transition is associated with some probability

Behavior \& Traces

- Behavior of state machine is an assignment of such signals to each port such that the signal on any output port is the output sequence produced by the input signals
- Example: garage counter

$$
\begin{aligned}
& s_{u p}=\{\text { absent }, \text { absent }, \text { present }, \text { absent }, \text { present }, \text { present }, \ldots\} \\
& s_{\text {down }}=\{\text { absent }, \text { absent, absent, present, absent, absent }, \ldots\} \\
& s_{\text {count }}=\{\text { absent, absent } 1,0,1,2, \ldots\}
\end{aligned}
$$

- $s_{\text {up }}, s_{\text {down }}, s_{\text {count }}$ together form the behavior
- For deterministic FSM if input sequence is known the output sequence can be determined
- Set of all behaviors of a state machine M is called its language $L(M)$

Behavior \& Traces (contd.)

- A behavior may be more conveniently represented as a sequence of valuations called observable trace
- If x_{i} is input and Y_{i} is output then following is an observable sequence $\left(\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots\right)$
- An execution trace may be defined as

$$
\begin{aligned}
& \left(\left(x_{0}, s_{0}, y_{0}\right),\left(x_{1}, s_{1}, y_{1}\right), \ldots\right) \\
& s_{0} \xrightarrow{x_{0} / y_{0}} s_{1} \xrightarrow{x_{1} / y_{1}} s_{2} \ldots
\end{aligned}
$$

Computation trees

- For nondeterministic machine, it may be useful to represent all possible traces

