
IIT Patna 1

Modeling: Discrete dynamics

Arijit Mondal
Dept. of Computer Science & Engineering

Indian Institute of Technology Patna

arijit@iitp.ac.in

IIT Patna 2

Introduction

• Embedded systems can include both discrete and continuous dynamics

• Continuous dynamics can be modeled by ordinary differential equation

• State machines are used to model discrete behavior of the systems

• A system operates in a sequence of discrete steps

• Example

• Number of cars in a parking area

IIT Patna 3

Car parking

• Arrival detector, departure detector

Arrival
Detector

Departure
detector

Counter∑
i

Display
count

• Similar to integrator

• Input is not continuous u : R → {absent, present}
• Also known as pure signal

IIT Patna 4

Event

• Systems are event triggered

• Sequence of steps known as reaction

• A particular reaction will observe the values of the inputs at a particular time and
calculate output values for the same time

• An actor has input ports P = {p1, p2, . . . , pN}
• Vp denotes the type of p (values may be received)
• At each reaction a variable can take p ∈ Vp ∪ {absent}

IIT Patna 5

Notion of state

• State of a system is its condition at a particular point of time

• State affects how the system reacts to inputs

• Integrator : discrete vs continuous

• Discrete modes with finite state space are called finite state machine

IIT Patna 6

Finite State Machine

• A state machine is a model with discrete dynamics that maps valuations of the inputs
to outputs where the map may depend on its current state

State 1 State 2

State 3

guard/action
Initial

IIT Patna 7

Finite State Machine: example

0 1 2 ... M

up ∧ ¬down/1 up ∧ ¬down/2 up ∧ ¬down/3 up ∧ ¬down/M

down ∧ ¬up/0 down ∧ ¬up/1 down ∧ ¬up/2 down ∧ ¬up/M − 1

inputs: up, down: pure
outputs: count:{0, 1, . . . ,M}

IIT Patna 8

Transition

• It governs the discrete dynamics of FSM

• Guard/Action

• Guard determines whether the transition may take on a reaction
• Action specifies the output for each reaction

• If p1 and p2 are inputs to FSM

• true — transition is always enabled
• p1 — transition is enabled if p1 is present
• ¬p1 — transition is enabled if p1 is absent
• p1 ∧ p2 — transition is enabled if both p1 and p2 are present
• p1 ∨ p2 — transition is enabled if either p1 or p2 are present

IIT Patna 9

Default transition

0 ...

up ∧ ¬down/1

true/

¬up ∧ down/0

IIT Patna 10

Finite State Machine: example

Cooling Heating

temp ≤ 18/off

temp ≥ 22/on

inputs: temp: R
outputs: on, off : pure

IIT Patna 11

FSM Definition

• It is a tuple 〈States, Inputs,Outputs,Update, InitialState〉
• States — finite number of states

• Inputs — set of input valuations

• Outputs — set of output valuations

• Update — States× Inputs → States×Outputs, mapping a state and input valuation
to a next state and a output valuation

• InitialState — start state

0 1 2 ... M

up ∧ ¬down/1 up ∧ ¬down/2 up ∧ ¬down/3 up ∧ ¬down/M

down ∧ ¬up/0 down ∧ ¬up/1 down ∧ ¬up/2 down ∧ ¬up/M − 1

inputs: up, down: pure
outputs: count:{0, 1, . . . ,M}

IIT Patna 12

FSM example

• States = {0, 1, 2, . . . ,M}
• Inputs = {up, down} → {present, absent}
• Outputs = {count} → {0, 1, 2, . . . ,M}
• InitialState = 0

• update(s, i) =

(s + 1, s + 1) if s < M ∧ up = present ∧ down = absent

(s − 1, s − 1) if s > 0 ∧ up = absent ∧ down = present

(s, absent) otherwise

IIT Patna 13

A few terminologies

• Determinacy — If for each state there is at most one transition enabled by each
input value

• Update function is not one to many mapping
• Same input will produce same output always

• Receptiveness — If for each state there is at least one transition possible on each
input symbol

• FSM is receptive as ’update’ is a function, not a partial function

• Chattering — A system oscillates between two states rapidly

• Stuttering — A system remains in the state due to absence of inputs and outputs

• Hysteresis — Dependence of the state of a system on its history.

IIT Patna 14

Mealy vs Moore machine

• Mealy machine

• Named after George Mealy
• Characterized by producing outputs when a transition is taken

• Moore machine

• Named after Edward Moore
• Produces the output when the machine is in a state
• Output is function of state only
• Strictly causal

• A Mealy machine can be converted into Moore machine

• A Moore machine can be converted into Mealy machine

• Mealy machine is preferred because of compactness and output is instantaneous with
respect to inputs

IIT Patna 15

Moore machine: example

0/0 1/1 2/2 ... M/M

up ∧ ¬down up ∧ ¬down up ∧ ¬down up ∧ ¬down

down ∧ ¬up down ∧ ¬up down ∧ ¬up down ∧ ¬up

inputs: up, down: pure
outputs: count:{0, 1, . . . ,M}

IIT Patna 16

Extended FSM

counting

up ∧ ¬down ∧ c < M/c + 1
c := c + 1

¬up ∧ down ∧ c > 0/c − 1
c := c − 1

c := 0

variable: c : {0, 1, . . . ,M}
inputs: up, down: pure
outputs: count:{0, 1, . . . ,M}

IIT Patna 17

Extended FSM

State 1 State 2

guard/output action
set action

guard/output action
set action

Initial set
condition

variable declaration
input declaration
output declaration

IIT Patna 18

Example: pedestrian crosswalk

• It starts with red

• It moves to green after 60 seconds

• It will remain in green if there is no pedestrian

• If the light goes to green, then it remains there at least for 60 seconds

• If there is a pedestrian, light becomes yellow if it has been green for more than 60
seconds

• The yellow light will remain for 5 seconds before it turns to red

IIT Patna 19

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY , sigG , sigR : pure

count := 0

count :=
count +1

count ≥ 60/sigG
count := 0

count < 60/
count := count + 1

pedestrian ∧ count < 60/
count := count + 1

count :=
count +1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count + 1

count ≥ 5/sigR
count := 0

IIT Patna 19

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY , sigG , sigR : pure

count := 0

count :=
count +1

count ≥ 60/sigG
count := 0

count < 60/
count := count + 1

pedestrian ∧ count < 60/
count := count + 1

count :=
count +1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count + 1

count ≥ 5/sigR
count := 0

IIT Patna 19

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY , sigG , sigR : pure

count := 0

count :=
count +1

count ≥ 60/sigG
count := 0

count < 60/
count := count + 1

pedestrian ∧ count < 60/
count := count + 1

count :=
count +1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count + 1

count ≥ 5/sigR
count := 0

IIT Patna 19

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY , sigG , sigR : pure

count := 0

count :=
count +1

count ≥ 60/sigG
count := 0

count < 60/
count := count + 1

pedestrian ∧ count < 60/
count := count + 1

count :=
count +1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count + 1

count ≥ 5/sigR
count := 0

IIT Patna 19

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY , sigG , sigR : pure

count := 0

count :=
count +1

count ≥ 60/sigG
count := 0

count < 60/
count := count + 1

pedestrian ∧ count < 60/
count := count + 1

count :=
count +1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count + 1

count ≥ 5/sigR
count := 0

IIT Patna 19

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY , sigG , sigR : pure

count := 0

count :=
count +1

count ≥ 60/sigG
count := 0

count < 60/
count := count + 1

pedestrian ∧ count < 60/
count := count + 1

count :=
count +1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count + 1

count ≥ 5/sigR
count := 0

IIT Patna 19

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY , sigG , sigR : pure

count := 0

count :=
count +1

count ≥ 60/sigG
count := 0

count < 60/
count := count + 1

pedestrian ∧ count < 60/
count := count + 1

count :=
count +1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count + 1

count ≥ 5/sigR
count := 0

IIT Patna 19

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY , sigG , sigR : pure

count := 0

count :=
count +1

count ≥ 60/sigG
count := 0

count < 60/
count := count + 1

pedestrian ∧ count < 60/
count := count + 1

count :=
count +1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count + 1

count ≥ 5/sigR
count := 0

IIT Patna 19

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY , sigG , sigR : pure

count := 0

count :=
count +1

count ≥ 60/sigG
count := 0

count < 60/
count := count + 1

pedestrian ∧ count < 60/
count := count + 1

count :=
count +1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count + 1

count ≥ 5/sigR
count := 0

IIT Patna 19

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY , sigG , sigR : pure

count := 0

count :=
count +1

count ≥ 60/sigG
count := 0

count < 60/
count := count + 1

pedestrian ∧ count < 60/
count := count + 1

count :=
count +1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count + 1

count ≥ 5/sigR
count := 0

IIT Patna 19

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY , sigG , sigR : pure

count := 0

count :=
count +1

count ≥ 60/sigG
count := 0

count < 60/
count := count + 1

pedestrian ∧ count < 60/
count := count + 1

count :=
count +1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count + 1

count ≥ 5/sigR
count := 0

IIT Patna 19

Example: pedestrian crosswalk

red pending

green

yellow

variable: count : {0, 1, . . . , 60}
input: pedestrian : pure
output: sigY , sigG , sigR : pure

count := 0

count :=
count +1

count ≥ 60/sigG
count := 0

count < 60/
count := count + 1

pedestrian ∧ count < 60/
count := count + 1

count :=
count +1

count ≥ 60/sigY
count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count := count + 1

count ≥ 5/sigR
count := 0

IIT Patna 20

Extended FSM

• The state of an extended machine includes not only the information about which
discrete state the machine is in, but also what values any variables have.

• Suppose there is, n discrete states, m variables each of which can take one of p possible
values

• Size of the state space will be |States| = npm

0 1 2 ... M

up ∧ ¬down/1 up ∧ ¬down/2 up ∧ ¬down/3 up ∧ ¬down/M

down ∧ ¬up/0 down ∧ ¬up/1 down ∧ ¬up/2 down ∧ ¬up/M − 1

inputs: up, down: pure
outputs: count:{0, 1, . . . ,M}

counting

up ∧ ¬down ∧ c < M/c + 1
c := c + 1

¬up ∧ down ∧ c > 0/c − 1
c := c − 1

c := 0

variable: c : {0, 1, . . . ,M}
inputs: up, down: pure
outputs: count:{0, 1, . . . ,M}

IIT Patna 21

Example

counting

up ∧ ¬down∧c < M/c + 1
c := c + 1

¬up ∧ down ∧ c > 0/c − 1
c := c − 1

c := 0

variable: c : {0, 1, . . . ,M}
inputs: up, down: pure
outputs: count:{0, 1, . . . ,M}

IIT Patna 22

Example: infinite states

red pending

green

yellow

variable: count : {0, 1, . . . ,M}
input: pedestrian : pure
output: sigY , sigG , sigR : pure

count := 0

count ≥ 60/sigG
count := 0

pedestrian ∧ count < 60/
count := count + 1

count ≥ 60/sigY
count := 0count ≥ 5/sigR

count := 0

pedestrian ∧ count ≥ 60/sigY
count := 0

count :=
count +1 count :=

count +1

count < 60/
count := count + 1

count := count + 1

IIT Patna 23

Pedestrian crosswalk: state count

none waiting

crossing

inputs: sigR, sigG , sigY : pure
output: pedestrian : pure

true/pedestrian

true/

sigR/sigG/

IIT Patna 24

Nondeterminism

• A state machine interacts with the environment

• Modeling of pedestrian

• If for any state, two distinct transitions with guards that can evaluate to true in the
same reaction, then the machine is nondeterministic

IIT Patna 25

Nondeterministic FSM

• It is a tuple 〈States, Inputs,Outputs, possibleUpdates, InitialStates〉
• States — finite number of states

• Inputs — set of input valuations

• Outputs — set of output valuations

• possibleUpdates — States × Inputs → 2States×Outputs , mapping a state and input
valuation to a next state and a set of possible (next state, output) pairs. Also known
as Transition Relation

• InitialStates — start states

red

green

yellow

output: sigR, sigG , sigY : pure
input: pedestrian : pure

true/sigR

true/sigG

true/sigG

true/sigY

true/sigY

true/sigR

IIT Patna 26

Nondeterministic FSM

IIT Patna 27

Uses of nondeterminism

• Environment modeling — to hide irrelevant details

• Specifications — system requirements imposes constraints on some features while the
others are unconstrained

• Probabilistic FSM is different from Non-deterministic FSM

• In probabilistic FSM, every transition is associated with some probability

IIT Patna 28

Behavior & Traces

• Behavior of state machine is an assignment of such signals to each port such that the
signal on any output port is the output sequence produced by the input signals

• Example: garage counter

sup = {absent, absent, present, absent, present, present, . . .}
sdown = {absent, absent, absent, present, absent, absent, . . .}
scount = {absent, absent, 1, 0, 1, 2, . . .}

• sup, sdown, scount together form the behavior

• For deterministic FSM if input sequence is known the output sequence can be deter-
mined

• Set of all behaviors of a state machine M is called its language L(M)

IIT Patna 29

Behavior & Traces (contd.)

• A behavior may be more conveniently represented as a sequence of valuations called
observable trace

• If xi is input and Yi is output then following is an observable sequence
((x0, y0), (x1, y1), . . .)

• An execution trace may be defined as

((x0, s0, y0), (x1, s1, y1), . . .)

s0
x0/y0→ s1

x1/y1→ s2 . . .

...
...

...
...

...
...

...
...

yellow yellow green red

red green

red

true/sigY
true/sigY

true/sigG
true/sigR

true/sigR true/sigY

IIT Patna 30

Computation trees

• For nondeterministic machine, it may be useful to represent all possible traces

