Modeling: Continuous Systems

Arijit Mondal
Dept. of Computer Science \& Engineering
Indian Institute of Technology Patna
arijit@iitp.ac.in

System modeling

- Mimic the real world behavior of the system
- There exist a large variety of systems
- Mechanical, electrical, chemical, biological, etc.
- Behavior of most of the system can be described using differential equations
- Continuous dynamics
- Modal models
- Used for modeling discrete systems
- For each mode, we have continuous dynamics
- Ordinary differential equation will be used to describe the system
- Properties like linearity, time invariance, stability, etc. will be considered

Helicopter

Helicopter

Image source: Internet

Newtonian mechanics

- Motion of object can be represented with six degrees of freedom

Newtonian mechanics

- Motion of object can be represented with six degrees of freedom
- Linear motion along x, y, z axis
- Angular motion θ_{x} (roll), θ_{y} (yaw), θ_{z} (pitch)

Newtonian mechanics

- Motion of object can be represented with six degrees of freedom
- Linear motion along x, y, z axis
- Angular motion θ_{x} (roll), θ_{y} (yaw), θ_{z} (pitch)
- Position of an object may be specified using six functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- \mathbb{R} denotes the time
- \mathbb{R} denotes the distance along an axis or angle relative to an axis

Newtonian mechanics

- Motion of object can be represented with six degrees of freedom
- Linear motion along x, y, z axis
- Angular motion θ_{x} (roll), θ_{y} (yaw), θ_{z} (pitch)
- Position of an object may be specified using six functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- \mathbb{R} denotes the time
- \mathbb{R} denotes the distance along an axis or angle relative to an axis
- Sometime this may be represented $x: \mathbb{R} \rightarrow \mathbb{R}^{3}, \boldsymbol{\theta}: \mathbb{R} \rightarrow \mathbb{R}^{3}$

Newtonian mechanics

- Motion of object can be represented with six degrees of freedom
- Linear motion along x, y, z axis
- Angular motion θ_{x} (roll), θ_{y} (yaw), θ_{z} (pitch)
- Position of an object may be specified using six functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- \mathbb{R} denotes the time
- \mathbb{R} denotes the distance along an axis or angle relative to an axis
- Sometime this may be represented $x: \mathbb{R} \rightarrow \mathbb{R}^{3}, \boldsymbol{\theta}: \mathbb{R} \rightarrow \mathbb{R}^{3}$
- Change in position or orientation can be determined by Newton's 2nd law

$$
F(t)=M \ddot{x}(t)
$$

- F - force, M - mass and \ddot{x} - second derivative ie. acceleration

Newtonian mechanics (contd.)

- Solving the equation we get $t>0, \quad \dot{x}(t)=\dot{x}(0)+\int_{0}^{t} \ddot{x}(\tau) d \tau$

Newtonian mechanics (contd.)

- Solving the equation we get $t>0, \quad \dot{x}(t)=\dot{x}(0)+\int_{0}^{t} \ddot{x}(\tau) d \tau$
- Rewriting, $t>0, \quad \dot{x}(t)=\dot{x}(0)+\frac{1}{M} \int_{0}^{t} F(\tau) d \tau$

Newtonian mechanics (contd.)

- Solving the equation we get $t>0, \quad \dot{x}(t)=\dot{x}(0)+\int_{0}^{t} \ddot{x}(\tau) d \tau$
- Rewriting, $t>0, \quad \dot{x}(t)=\dot{x}(0)+\frac{1}{M} \int_{0}^{t} F(\tau) d \tau$
- We have, $x(t)=x(0)+\int_{0}^{t} \dot{x}(\tau) d \tau$

Newtonian mechanics (contd.)

- Solving the equation we get $t>0, \quad \dot{x}(t)=\dot{x}(0)+\int_{0}^{t} \ddot{x}(\tau) d \tau$
- Rewriting, $t>0, \quad \dot{x}(t)=\dot{x}(0)+\frac{1}{M} \int_{0}^{t} F(\tau) d \tau$
- We have, $x(t)=x(0)+\int_{0}^{t} \dot{x}(\tau) d \tau=x(0)+t \dot{x}(0)+\frac{1}{M} \int_{0}^{t} \int_{0}^{\tau} F(\alpha) d \alpha d \tau$

Newtonian mechanics (contd.)

- Solving the equation we get $t>0, \quad \dot{x}(t)=\dot{x}(0)+\int_{0}^{t} \ddot{x}(\tau) d \tau$
- Rewriting, $t>0, \quad \dot{x}(t)=\dot{x}(0)+\frac{1}{M} \int_{0}^{t} F(\tau) d \tau$
- We have, $x(t)=x(0)+\int_{0}^{t} \dot{x}(\tau) d \tau=x(0)+t \dot{x}(0)+\frac{1}{M} \int_{0}^{t} \int_{0}^{\tau} F(\alpha) d \alpha d \tau$
- Rotational version of force is torque $\boldsymbol{T}(t)=\frac{d}{d t}(\boldsymbol{I}(t) \dot{\boldsymbol{\theta}}(t))$
- I - Moment of inertia (depends on the geometry and orientation)

Newtonian mechanics (contd.)

- Solving the equation we get $t>0, \quad \dot{x}(t)=\dot{x}(0)+\int_{0}^{t} \ddot{x}(\tau) d \tau$
- Rewriting, $t>0, \quad \dot{x}(t)=\dot{x}(0)+\frac{1}{M} \int_{0}^{t} F(\tau) d \tau$
- We have, $x(t)=x(0)+\int_{0}^{t} \dot{x}(\tau) d \tau=x(0)+t \dot{x}(0)+\frac{1}{M} \int_{0}^{t} \int_{0}^{\tau} F(\alpha) d \alpha d \tau$
- Rotational version of force is torque $\boldsymbol{T}(t)=\frac{d}{d t}(\boldsymbol{I}(t) \dot{\boldsymbol{\theta}}(t))$
- I - Moment of inertia (depends on the geometry and orientation)

$$
\boldsymbol{\theta}(t)=\boldsymbol{\theta}(0)+t \dot{\boldsymbol{\theta}}(0)+\frac{1}{I} \int_{0}^{t} \int_{0}^{\tau} \boldsymbol{T}(\alpha) d \alpha d \tau
$$

Helicopter model

- Helicopter has two rotors
- Main rotor to lift
- Tail rotor to counter balance spin
- Hence, we have

$$
\begin{aligned}
& \ddot{\boldsymbol{\theta}}_{y}(t)=T_{y}(t) / I_{y y} \Rightarrow \\
& \dot{\boldsymbol{\theta}}_{y}(t)=\dot{\boldsymbol{\theta}}_{y}(0)+\frac{1}{I_{y y}} \int_{0}^{t} T_{y}(\tau) d \tau
\end{aligned}
$$

main rotor shaft

Actor model

- Physical system can be described by input (force, torque) and output (position, orientation, velocity, rotation, etc.)

- Usually X is time (domain) and Y value of particular signal (codomain) - $S: X \rightarrow Y, x, y \in \mathbb{R}$

Actor model

- Physical system can be described by input (force, torque) and output (position, orientation, velocity, rotation, etc.)

- Usually X is time (domain) and Y value of particular signal (codomain) - $S: X \rightarrow Y, x, y \in \mathbb{R}$
- Example

Actor model (contd.)

- Actor models are composable

$\forall t \in \mathbb{R}, \quad y_{1}(t)=x_{2}(t)$

Actor model (contd.)

- Actor models are composable

$\forall t \in \mathbb{R}, \quad y_{1}(t)=x_{2}(t)$
- Example

- We have $\forall t \in \mathbb{R} \quad y_{2}(t)=i+\int_{0}^{t} x_{2}(\tau) d \tau$ where $a=1 / I_{y y}, i=\dot{\theta}_{y}(0), x_{1}=T_{y}$ and $y_{2}=\dot{\theta}_{y}$

Actor model (contd.)

- Actor can have multiple inputs

- Another useful building block is signal adder

- $y(t)=x_{1}(t)+x_{2}(t), y(t)=x_{1}(t)-x_{2}(t)$

Properties of systems

- Causal system
- Memoryless systems
- Linear and time invariant
- Stability
- Feedback control

Causal systems

- Output depends only on current and past inputs
- Consider a continuous time signal x
- Let $\left.x\right|_{t \leq \tau}$ represent restriction in time defined only for $t \leq \tau$
- Consider a continuous time system $S: X \rightarrow Y$, the system is causal if for all $x_{1}, x_{2} \in X$ and $\tau \in R,\left.\quad x_{1}\right|_{t \leq \tau}=\left.\left.x_{2}\right|_{t \leq \tau} \Rightarrow S\left(x_{1}\right)\right|_{t \leq \tau}=\left.S\left(x_{2}\right)\right|_{t \leq \tau}$
- Strictly causal $\forall \tau \in R,\left.\quad x_{1}\right|_{t<\tau}=\left.\left.x_{2}\right|_{t<\tau} \Rightarrow S\left(x_{1}\right)\right|_{t \leq \tau}=\left.S\left(x_{2}\right)\right|_{t \leq \tau}$

Causal systems

- Output depends only on current and past inputs
- Consider a continuous time signal x
- Let $\left.x\right|_{t \leq \tau}$ represent restriction in time defined only for $t \leq \tau$
- Consider a continuous time system $S: X \rightarrow Y$, the system is causal if for all $x_{1}, x_{2} \in X$ and $\tau \in R,\left.\quad x_{1}\right|_{t \leq \tau}=\left.\left.x_{2}\right|_{t \leq \tau} \Rightarrow S\left(x_{1}\right)\right|_{t \leq \tau}=\left.S\left(x_{2}\right)\right|_{t \leq \tau}$
- Strictly causal $\forall \tau \in R,\left.\quad x_{1}\right|_{t<\tau}=\left.\left.x_{2}\right|_{t<\tau} \Rightarrow S\left(x_{1}\right)\right|_{t \leq \tau}=\left.S\left(x_{2}\right)\right|_{t \leq \tau}$
- Example
- Integrator is strictly causal
- Adder is not strictly causal but causal
- Strictly causal actors are good for continuous feedback system

Memoryless systems

- A systems has memory if the output depends not only on the current inputs but also on the past inputs
- Formally, $S: X \rightarrow Y$ the system is memoryless if there exist a function $f: X \rightarrow Y$ such that for all $x \in X,(S(x))(t)=f(x(t))$ for all $t \in R$

Memoryless systems

- A systems has memory if the output depends not only on the current inputs but also on the past inputs
- Formally, $S: X \rightarrow Y$ the system is memoryless if there exist a function $f: X \rightarrow Y$ such that for all $x \in X,(S(x))(t)=f(x(t))$ for all $t \in R$
- Example
- Integrator is not memoryless
- Adder is memoryless

Linear and time invariant (LTI)

- A systems $S: X \rightarrow Y$ where X and Y are sets of signals is linear if it satisfies the superposition property
$\forall x_{1}, x_{2} \in X$ and $\forall a, b \in R \quad S\left(a x_{1}+b x_{2}\right)=a S\left(x_{1}\right)+b S\left(x_{2}\right)$
- Time invariance means that whether we apply an input to the system now or T seconds from now, the output will be identical except for a time delay of T seconds.
- Let D_{τ} be the delay operator such that $\left(D_{\tau}(x)\right)(t)=x(t-\tau)$
- For time invariance, $S\left(D_{\tau}(x)\right)=D_{\tau}(S(x))$

Linear and time invariant (LTI)

- A systems $S: X \rightarrow Y$ where X and Y are sets of signals is linear if it satisfies the superposition property
$\forall x_{1}, x_{2} \in X$ and $\forall a, b \in R \quad S\left(a x_{1}+b x_{2}\right)=a S\left(x_{1}\right)+b S\left(x_{2}\right)$
- Time invariance means that whether we apply an input to the system now or T seconds from now, the output will be identical except for a time delay of T seconds.
- Let D_{τ} be the delay operator such that $\left(D_{\tau}(x)\right)(t)=x(t-\tau)$
- For time invariance, $S\left(D_{\tau}(x)\right)=D_{\tau}(S(x))$
- $\dot{\theta}_{y}(t)=\frac{1}{l_{y y}} \int_{-\infty}^{t} T_{y}(\tau) d \tau-$ LTI
- Many systems are approximated to LTI

Stability

- A system is bounded input bounded output stable if the output signal is bounded for all inputs signals that are bounded
- Helicopter is unstable

Feedback systems

- A system with feedback has directed cycle where an output from an actor is fed back to affect an input of the same actor

Example: No rotation

- Want to have 0 angular velocity

Example: No rotation (contd.)

- Our equation remains the same, only input has changed.

Example: No rotation (contd.)

- Our equation remains the same, only input has changed.
- $\dot{\theta}_{y}(t)=\dot{\theta}_{y}(0)+\frac{1}{l_{y y}} \int_{0}^{t} T_{y}(\tau) d \tau=\dot{\theta}_{y}(0)+\frac{1}{l_{y y}} \int_{0}^{t}\left(\psi(\tau)-\dot{\theta}_{y}(\tau)\right) d \tau$

Example: No rotation (contd.)

- Our equation remains the same, only input has changed.
- $\dot{\theta}_{y}(t)=\dot{\theta}_{y}(0)+\frac{1}{l_{y y}} \int_{0}^{t} T_{y}(\tau) d \tau=\dot{\theta}_{y}(0)+\frac{1}{I_{y y}} \int_{0}^{t}\left(\psi(\tau)-\dot{\theta}_{y}(\tau)\right) d \tau$
- We have, $e(t)=\psi(t)-\dot{\theta}_{y}(t), T_{y}(t)=\operatorname{Ke}(t)$

Example: No rotation (contd.)

- Our equation remains the same, only input has changed.
- $\dot{\theta}_{y}(t)=\dot{\theta}_{y}(0)+\frac{1}{I_{y y}} \int_{0}^{t} T_{y}(\tau) d \tau=\dot{\theta}_{y}(0)+\frac{1}{I_{y y}} \int_{0}^{t}\left(\psi(\tau)-\dot{\theta}_{y}(\tau)\right) d \tau$
- We have, $e(t)=\psi(t)-\dot{\theta}_{y}(t), T_{y}(t)=\operatorname{Ke}(t)$
- Reorganizing we get, $\dot{\theta}_{y}(t)=\dot{\theta}_{y}(0)-\frac{K}{I_{y y}} \int_{0}^{t} \dot{\theta}_{y}(t) d \tau$

Example: No rotation (contd.)

- Our equation remains the same, only input has changed.
- $\dot{\theta}_{y}(t)=\dot{\theta}_{y}(0)+\frac{1}{l_{y y}} \int_{0}^{t} T_{y}(\tau) d \tau=\dot{\theta}_{y}(0)+\frac{1}{I_{y y}} \int_{0}^{t}\left(\psi(\tau)-\dot{\theta}_{y}(\tau)\right) d \tau$
- We have, $e(t)=\psi(t)-\dot{\theta}_{y}(t), T_{y}(t)=\operatorname{Ke}(t)$
- Reorganizing we get, $\dot{\theta}_{y}(t)=\dot{\theta}_{y}(0)-\frac{K}{I_{y y}} \int_{0}^{t} \dot{\theta}_{y}(t) d \tau$
- We know, $\int_{0}^{t} a e^{a \tau} d \tau=e^{a t} u(t)-1$

Example: No rotation (contd.)

- Our equation remains the same, only input has changed.
- $\dot{\theta}_{y}(t)=\dot{\theta}_{y}(0)+\frac{1}{l_{y y}} \int_{0}^{t} T_{y}(\tau) d \tau=\dot{\theta}_{y}(0)+\frac{1}{I_{y y}} \int_{0}^{t}\left(\psi(\tau)-\dot{\theta}_{y}(\tau)\right) d \tau$
- We have, $e(t)=\psi(t)-\dot{\theta}_{y}(t), T_{y}(t)=\operatorname{Ke}(t)$
- Reorganizing we get, $\dot{\theta}_{y}(t)=\dot{\theta}_{y}(0)-\frac{K}{I_{y y}} \int_{0}^{t} \dot{\theta}_{y}(t) d \tau$
- We know, $\int_{0}^{t} a e^{a \tau} d \tau=e^{a t} u(t)-1$
- Therefore we have, $\dot{\theta}_{y}(t)=\dot{\theta}_{y}(0) e^{-K t / l_{y y}} u(t)$

Example: Constant rotation

- Only input has changed. $\psi(t)=a u(t)$

Example: Constant rotation

- Only input has changed. $\psi(t)=a u(t)$
$\dot{\theta}_{y}(t)=\frac{1}{I_{y y}} \int_{0}^{t} T_{y}(\tau) d \tau=\frac{K}{I_{y y}} \int_{0}^{t}\left(\psi(t)-\dot{\theta}_{y}(t)\right) d \tau$

Example: Constant rotation

- Only input has changed. $\psi(t)=a u(t)$

$$
\begin{aligned}
& \dot{\theta}_{y}(t)=\frac{1}{l_{y y}} \int_{0}^{t} T_{y}(\tau) d \tau=\frac{K}{l_{y y}} \int_{0}^{t}\left(\psi(t)-\dot{\theta}_{y}(t)\right) d \tau \\
& =\frac{K}{l_{y y}} \int_{0}^{t} a d \tau-\frac{K}{l_{y y}} \int_{0}^{t} \dot{\theta}_{y}(\tau) d \tau=\frac{K a t}{l_{y y}}-\frac{K}{l_{y y}} \int_{0}^{t} \dot{\theta}_{y}(\tau) d \tau
\end{aligned}
$$

Example: Constant rotation

- Only input has changed. $\psi(t)=a u(t)$
$\dot{\theta}_{y}(t)=\frac{1}{l_{y y}} \int_{0}^{t} T_{y}(\tau) d \tau=\frac{K}{l_{y y}} \int_{0}^{t}\left(\psi(t)-\dot{\theta}_{y}(t)\right) d \tau$
$=\frac{K}{I_{y y}} \int_{0}^{t} a d \tau-\frac{K}{I_{y y}} \int_{0}^{t} \dot{\theta}_{y}(\tau) d \tau=\frac{K a t}{I_{y y}}-\frac{K}{I_{y y}} \int_{0}^{t} \dot{\theta}_{y}(\tau) d \tau$
- $\dot{\theta}_{y}(t)=a u(t)\left(1-e^{-K t / l y y}\right)$

