Modeling: Continuous Systems

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

System modeling

- Mimic the real world behavior of the system
- There exist a large variety of systems
 - Mechanical, electrical, chemical, biological, etc.
- Behavior of most of the system can be described using differential equations
- Continuous dynamics
 - Modal models
 - Used for modeling discrete systems
 - For each mode, we have continuous dynamics
- Ordinary differential equation will be used to describe the system
 - Properties like linearity, time invariance, stability, etc. will be considered

Helicopter

Image source: Internet

Helicopter

Image source: Internet

• Motion of object can be represented with six degrees of freedom

- Motion of object can be represented with six degrees of freedom
 - Linear motion along x, y, z axis
 - Angular motion θ_x (roll), θ_y (yaw), θ_z (pitch)

- Motion of object can be represented with six degrees of freedom
 - Linear motion along x, y, z axis
 - Angular motion θ_x (roll), θ_y (yaw), θ_z (pitch)
- Position of an object may be specified using six functions $f: \mathbb{R} \to \mathbb{R}$
 - R denotes the time
 - R denotes the distance along an axis or angle relative to an axis

- Motion of object can be represented with six degrees of freedom
 - Linear motion along x, y, z axis
 - Angular motion θ_x (roll), θ_y (yaw), θ_z (pitch)
- Position of an object may be specified using six functions $f: \mathbb{R} \to \mathbb{R}$
 - R denotes the time
 - ullet denotes the distance along an axis or angle relative to an axis
- Sometime this may be represented $x : \mathbb{R} \to \mathbb{R}^3$, $\theta : \mathbb{R} \to \mathbb{R}^3$

- Motion of object can be represented with six degrees of freedom
 - Linear motion along x, y, z axis
 - Angular motion θ_x (roll), θ_y (yaw), θ_z (pitch)
- Position of an object may be specified using six functions $f: \mathbb{R} \to \mathbb{R}$
 - R denotes the time
 - R denotes the distance along an axis or angle relative to an axis
- Sometime this may be represented $x : \mathbb{R} \to \mathbb{R}^3$, $\theta : \mathbb{R} \to \mathbb{R}^3$
- Change in position or orientation can be determined by Newton's 2nd law

$$F(t) = M\ddot{x}(t)$$

• F - force, M - mass and \ddot{x} - second derivative ie. acceleration

• Solving the equation we get t>0, $\dot{x}(t)=\dot{x}(0)+\int_0^t \ddot{x}(\tau)d\tau$

- Solving the equation we get t>0, $\dot{x}(t)=\dot{x}(0)+\int_0^t \ddot{x}(\tau)d\tau$
- Rewriting, t>0, $\dot{x}(t)=\dot{x}(0)+\frac{1}{M}\int_{0}^{t}F(\tau)d\tau$

- Solving the equation we get t > 0, $\dot{x}(t) = \dot{x}(0) + \int_{0}^{t} \ddot{x}(\tau)d\tau$
- Rewriting, t > 0, $\dot{x}(t) = \dot{x}(0) + \frac{1}{M} \int_{0}^{t} F(\tau) d\tau$ • We have, $x(t) = x(0) + \int_0^t \dot{x}(\tau) d\tau$

- Solving the equation we get t > 0, $\dot{x}(t) = \dot{x}(0) + \int_{0}^{\tau} \ddot{x}(\tau) d\tau$
- Rewriting, t > 0, $\dot{x}(t) = \dot{x}(0) + \frac{1}{M} \int_{0}^{t} F(\tau) d\tau$ • We have, $x(t) = x(0) + \int_0^t \dot{x}(\tau)d\tau = x(0) + t\dot{x}(0) + \frac{1}{M}\int_0^t \int_0^\tau F(\alpha)d\alpha\,d\tau$

- Solving the equation we get t > 0, $\dot{x}(t) = \dot{x}(0) + \int_{1}^{t} \ddot{x}(\tau) d\tau$
- Rewriting, t > 0, $\dot{x}(t) = \dot{x}(0) + \frac{1}{M} \int_{0}^{t} F(\tau) d\tau$
- We have, $x(t) = x(0) + \int_0^t \dot{x}(\tau)d\tau = x(0) + t\dot{x}(0) + \frac{1}{M}\int_0^t \int_0^\tau F(\alpha)d\alpha\,d\tau$

• / - Moment of inertia (depends on the geometry and orientation)

- Rotational version of force is torque $T(t) = \frac{d}{dt} \left(I(t) \dot{\theta}(t) \right)$

• Solving the equation we get t > 0, $\dot{x}(t) = \dot{x}(0) + \int_{0}^{t} \ddot{x}(\tau) d\tau$

• Rewriting,
$$t>0$$
, $\dot{x}(t)=\dot{x}(0)+\frac{1}{M}\int_{0}^{t}\boldsymbol{F}(\tau)d\tau$

We have,
$$x(t)=x(0)+\int^t\dot{x}(au)d au=x(0)+t\dot{x}(0)$$

• We have, $x(t) = x(0) + \int_0^t \dot{x}(\tau)d\tau = x(0) + t\dot{x}(0) + \frac{1}{M}\int_0^t \int_0^\tau F(\alpha)d\alpha\,d\tau$

We have,
$$x(t) = x(0) + \int_0^t \dot{x}(\tau) d\tau = x(0) + tx$$

- ullet Rotational version of force is torque $m{T}(t)=rac{d}{dt}\left(m{I}(t)\dot{m{ heta}}(t)
 ight)$

• I - Moment of inertia (depends on the geometry and orientation)
$$0(t) = \frac{1}{2} \int_{-\infty}^{t} \int_{-\infty}^{\tau} T(t) dt$$

$$oldsymbol{ heta}(t) = oldsymbol{ heta}(0) + t \dot{oldsymbol{ heta}}(0) + rac{1}{I} \int_0^t \int_0^ au oldsymbol{\mathcal{T}}(lpha) \, dlpha \, d au$$

| Helicopter model

- Helicopter has two rotors
 - Main rotor to lift.
 - Tail rotor to counter balance spin
- Hence, we have

$$\ddot{ heta}_y(t) = T_y(t)/I_{yy} \Rightarrow \dot{ heta}_y(t) = \dot{ heta}_y(0) + rac{1}{I_{yy}} \int_0^t T_y(au) d au$$

Image source: Internet

Actor model

• Physical system can be described by input (force, torque) and output (position, orientation, velocity, rotation, etc.)

- Usually X is time (domain) and Y value of particular signal (codomain)
- $S: X \to Y, x, y \in \mathbb{R}$

Actor model

Physical system can be described by input (force, torque) and output (position, orientation, velocity, rotation, etc.)

- Usually X is time (domain) and Y value of particular signal (codomain)
 S: X → Y, x, v ∈ ℝ
- Example I_{yy}, θ $\dot{\theta}_y$

Actor model (contd.)

Actor models are composable

Actor model (contd.)

• Actor models are composable

$$S_1$$
 S_2 S_2 S_2 S_2 S_2

Actor model (contd.)

• Actor can have multiple inputs

$$S_1$$
 S_1 S_1

Another useful building block is signal adder

$$x_1$$
 x_2
 x_2
 x_2
 x_3
 x_4
 x_2

• $y(t) = x_1(t) + x_2(t), y(t) = x_1(t) - x_2(t)$

Properties of systems

- Causal system
- Memoryless systems
- Linear and time invariant
- Stability
- Feedback control

Causal systems

- Output depends only on current and past inputs
- Consider a continuous time signal x
- Let $x|_{t \le \tau}$ represent restriction in time defined only for $t \le \tau$
- Consider a continuous time system $S: X \to Y$, the system is causal if for all $x_1, x_2 \in X$
- and $\tau \in R$, $x_1|_{t \le \tau} = x_2|_{t \le \tau} \Rightarrow S(x_1)|_{t \le \tau} = S(x_2)|_{t \le \tau}$

Causal systems

- Output depends only on current and past inputs
- Consider a continuous time signal x
- Let $x|_{t \le \tau}$ represent restriction in time defined only for $t \le \tau$
- Consider a continuous time system $S: X \to Y$, the system is causal if for all $x_1, x_2 \in X$
- and $\tau \in R$, $x_1|_{t \le \tau} = x_2|_{t \le \tau} \Rightarrow S(x_1)|_{t \le \tau} = S(x_2)|_{t \le \tau}$

• Strictly causal $\forall \tau \in R$, $x_1|_{t < \tau} = x_2|_{t < \tau} \Rightarrow S(x_1)|_{t < \tau} = S(x_2)|_{t < \tau}$

- Example
 - Integrator is strictly causal

 - Adder is not strictly causal but causal
- Strictly causal actors are good for continuous feedback system

Memoryless systems

A systems has memory if the output depends not only on the current inputs but also on

the past inputs

• Formally, $S: X \to Y$ the system is memoryless if there exist a function $f: X \to Y$ such that for all $x \in X$, (S(x))(t) = f(x(t)) for all $t \in R$

Memoryless systems

- A systems has memory if the output depends not only on the current inputs but also on the past inputs
 Formally, S: X → Y the system is memoryless if there exist a function f: X → Y such
- Formally, $S: X \to Y$ the system is memoryless if there exist a function $f: X \to Y$ such that for all $x \in X$, (S(x))(t) = f(x(t)) for all $t \in R$ Example
 - Integrator is not memoryles
 - Integrator is not memoryless
 - Adder is memoryless

Linear and time invariant (LTI)

• A systems $S: X \to Y$ where X and Y are sets of signals is linear if it satisfies the superposition property $\forall x_1, x_2 \in X \text{ and } \forall a, b \in R$ $S(ax_1 + bx_2) = aS(x_1) + bS(x_2)$

- Time invariance means that whether we apply an input to the system now or T seconds from now, the output will be identical except for a time delay of T seconds.
 - Let D_{τ} be the delay operator such that $(D_{\tau}(x))(t) = x(t-\tau)$
 - For time invariance, $S(D_{\tau}(x)) = D_{\tau}(S(x))$

|Linear and time invariant (LTI)

• A systems $S: X \to Y$ where X and Y are sets of signals is linear if it satisfies the superposition property $\forall x_1, x_2 \in X \text{ and } \forall a, b \in R$ $S(ax_1 + bx_2) = aS(x_1) + bS(x_2)$

- Time invariance means that whether we apply an input to the system now or T seconds
- from now, the output will be identical except for a time delay of T seconds. • Let D_{τ} be the delay operator such that $(D_{\tau}(x))(t) = x(t-\tau)$
- ullet $\dot{ heta}_{y}(t)=rac{1}{I_{yy}}\int_{-\infty}^{t}T_{y}(au)d au$ LTI

• For time invariance, $S(D_{\tau}(x)) = D_{\tau}(S(x))$

Many systems are approximated to LTI

Stability

- A system is bounded input bounded output stable if the output signal is bounded for all inputs signals that are bounded
- Helicopter is unstable

Feedback systems

 A system with feedback has directed cycle where an output from an actor is fed back to affect an input of the same actor

Example: No rotation

• Want to have 0 angular velocity

• Our equation remains the same, only input has changed.

- Our equation remains the same, only input has changed.
- $\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) + \frac{1}{l_{yy}} \int_{0}^{t} T_{y}(\tau) d\tau = \dot{\theta}_{y}(0) + \frac{1}{l_{yy}} \int_{0}^{t} (\psi(\tau) \dot{\theta}_{y}(\tau)) d\tau$

- Our equation remains the same, only input has changed.
- $\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) + \frac{1}{h_{yy}} \int_{0}^{t} T_{y}(\tau) d\tau = \dot{\theta}_{y}(0) + \frac{1}{h_{yy}} \int_{0}^{t} (\psi(\tau) \dot{\theta}_{y}(\tau)) d\tau$
- We have, $e(t) = \psi(t) \dot{\theta}_v(t)$, $T_v(t) = Ke(t)$

- Our equation remains the same, only input has changed.
- $\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) + \frac{1}{h_{xy}} \int_{0}^{t} T_{y}(\tau) d\tau = \dot{\theta}_{y}(0) + \frac{1}{h_{xy}} \int_{0}^{t} (\psi(\tau) \dot{\theta}_{y}(\tau)) d\tau$
- We have, $e(t) = \psi(t) \dot{\theta}_v(t)$, $T_v(t) = Ke(t)$
- Reorganizing we get, $\dot{\theta}_y(t) = \dot{\theta}_y(0) \frac{K}{h_{xy}} \int_0^t \dot{\theta}_y(t) d\tau$

- Our equation remains the same, only input has changed.
- $\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) + \frac{1}{h_{xy}} \int_{0}^{t} T_{y}(\tau) d\tau = \dot{\theta}_{y}(0) + \frac{1}{h_{xy}} \int_{0}^{t} (\psi(\tau) \dot{\theta}_{y}(\tau)) d\tau$
- We have, $e(t) = \psi(t) \dot{\theta}_v(t)$, $T_v(t) = Ke(t)$
- Reorganizing we get, $\dot{\theta}_y(t) = \dot{\theta}_y(0) \frac{K}{L_y} \int_0^t \dot{\theta}_y(t) d\tau$
- We know, $\int_{0}^{t} ae^{a\tau} d\tau = e^{at} u(t) 1$

- Our equation remains the same, only input has changed.
- $\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) + \frac{1}{h_{xy}} \int_{0}^{t} T_{y}(\tau) d\tau = \dot{\theta}_{y}(0) + \frac{1}{h_{xy}} \int_{0}^{t} (\psi(\tau) \dot{\theta}_{y}(\tau)) d\tau$
- We have, $e(t) = \psi(t) \dot{\theta}_v(t)$, $T_v(t) = Ke(t)$
- Reorganizing we get, $\dot{\theta}_y(t) = \dot{\theta}_y(0) \frac{K}{L_y} \int_0^t \dot{\theta}_y(t) d\tau$
- We know, $\int_{\hat{a}}^{\tau} ae^{a\tau}d\tau = e^{at}u(t) 1$
- Therefore we have, $\dot{\theta}_{v}(t) = \dot{\theta}_{v}(0)e^{-Kt/l_{yy}}u(t)$

ullet Only input has changed. $\psi(t)=au(t)$

• Only input has changed. $\psi(t) = au(t)$

Only input has changed.
$$\psi(t) = au(t)$$

$$\dot{\theta}_{*}(t) = \frac{1}{t} \int_{0}^{t} T_{*}(\tau) d\tau = \frac{K}{t} \int_{0}^{t} (\psi(t) - t) d\tau$$

Only input has changed.
$$\psi(t) = au(t)$$

$$\dot{\theta}_y(t) = \frac{1}{I_{yy}} \int_0^t T_y(\tau) d\tau = \frac{K}{I_{yy}} \int_0^t (\psi(t) - \dot{\theta}_y(t)) d\tau$$

• Only input has changed. $\psi(t) = au(t)$

$$\dot{ heta}_y(t) = rac{1}{I_{yy}} \int_0^t \mathcal{T}_y(au) d au = rac{K}{I_{yy}} \int_0^t (\psi(t) - \dot{ heta}_y(t)) d au$$

IIT Patna

$$\dot{\theta}_{y}(t) = \frac{1}{I_{yy}} \int_{0}^{t} T_{y}(\tau) d\tau = \frac{K}{I_{yy}} \int_{0}^{t} (\psi(t)) d\tau$$

$$\dot{\theta}_{y}(t) = \frac{1}{I_{yy}} \int_{0}^{T} T_{y}(\tau) d\tau = \frac{K}{I_{yy}} \int_{0}^{T} (\psi(t)) d\tau$$

$$K \int_{0}^{T} K \int_{0}^{T} K \int_{0}^{T} K d\tau$$

 $=\frac{K}{I_{\text{ov}}}\int_{0}^{t}ad\tau-\frac{K}{I_{\text{ov}}}\int_{0}^{t}\dot{\theta}_{y}(\tau)d\tau=\frac{Kat}{I_{\text{ov}}}-\frac{K}{I_{\text{ov}}}\int_{0}^{t}\dot{\theta}_{y}(\tau)d\tau$

$$\int_{0}^{t} (\psi(t))$$

$$-\dot{ heta}_{y}(t)$$

$$\dot{ heta}_y(t))d au$$

• Only input has changed. $\psi(t) = au(t)$

$$\dot{ heta}_{ extstyle y}(t) = rac{1}{I_{ extstyle yy}} \int_0^t T_y(au) d au = rac{K}{I_{ extstyle yy}} \int_0^t (\psi(t) - \dot{ heta}_{ extstyle y}(t)) d au$$

$$heta_y(t) = rac{1}{I_{yy}} \int_0^t T_y(au) d au = rac{K}{I_{yy}} \int_0^t (\psi(t) - K) d au$$

$$=\frac{K}{L_{yy}}\int_{0}^{t} d\tau - \frac{K}{L_{yy}}\int_{0}^{t} \dot{\theta}_{x}(\tau)d\tau = \frac{Kat}{L_{yy}}$$

$$=\frac{K}{L}\int_{0}^{t}ad\tau-\frac{K}{L}\int_{0}^{t}\dot{\theta}_{y}(\tau)d\tau=\frac{Kat}{L}-$$

$$=\frac{K}{L}\int_{0}^{t}ad\tau-\frac{K}{L}\int_{0}^{t}\dot{\theta}_{y}(\tau)d\tau=\frac{Kat}{L}$$

$$=\frac{K}{l_{\text{ov}}}\int_{0}^{t}ad\tau-\frac{K}{l_{\text{ov}}}\int_{0}^{t}\dot{\theta}_{y}(\tau)d\tau=\frac{Kat}{l_{\text{ov}}}-\frac{K}{l_{\text{ov}}}\int_{0}^{t}\dot{\theta}_{y}(\tau)d\tau$$

• $\dot{\theta}_{y}(t) = au(t)(1 - e^{-Kt/I_{yy}})$

$$-\frac{K}{\pi}\int_{0}^{t} d\tau - \frac{K}{\pi}\int_{0}^{t} \dot{\theta}(\tau)d\tau - \frac{Kat}{\pi}$$

$$=\frac{Kat}{m}$$

$$(t) - \theta_y$$

$$-\dot{\theta}_{y}(t)$$

$$\dot{\theta}_y(t))d\tau$$

$$y(t))d\tau$$

$$-\dot{\theta}_{\nu}(t))a$$

$$(t)d\tau$$