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System modeling

e Mimic the real world behavior of the system
e There exist a large variety of systems
e Mechanical, electrical, chemical, biological, etc.
e Behavior of most of the system can be described using differential equations

e Continuous dynamics
e Modal models

e Used for modeling discrete systems
e For each mode, we have continuous dynamics

e Ordinary differential equation will be used to describe the system
o Properties like linearity, time invariance, stability, etc. will be considered
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Newtonian mechanics

e Motion of object can be represented with six degrees of freedom
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Newtonian mechanics

e Motion of object can be represented with six degrees of freedom

e Linear motion along x, y, z axis
e Angular motion 6y (roll), 8, (yaw), 8, (pitch)
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Newtonian mechanics

e Motion of object can be represented with six degrees of freedom
e Linear motion along x, y, z axis
e Angular motion 6y (roll), 8, (yaw), 8, (pitch)

e Position of an object may be specified using six functions f : R — R
e R denotes the time
e R denotes the distance along an axis or angle relative to an axis

e Sometime this may be represented x : R — R3, 0 : R — R3

e Change in position or orientation can be determined by Newton's 2nd law

F(t) = Mx(t)

e F - force, M - mass and X - second derivative ie. acceleration
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Newtonian mechanics (contd.)

t
e Solving the equation we get t > 0, x(t) = x(0) +/ X(1)dt
0
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Newtonian mechanics (contd.)
t

e Solving the equation we get t > 0, x(t) = x(0) +/ X(1)dt
0

t
e Rewriting, t >0, x(t)=x(0)+ /\1/1/ F(r)dr
0
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Newtonian mechanics (contd.)
t
e Solving the equation we get t > 0, x(t) = x(0) _|_/ %(7)dT
0
t
e Rewriting, t >0, x(t)=x(0)+ /\1/1/ F(r)dr
0

e We have, x(t) = x(0) + /Ot)'((T)dT
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Newtonian mechanics (contd.)
t
e Solving the equation we get t > 0, x(t) = x(0) _|_/ %(r)dr
0
t
e Rewriting, t >0, x(t)=x(0)+ /\1/1/ F(r)dr
0

e We have, x(t) = x(0) + /0 x(7)dT = x(0) + tx(0) + /\l/l /0 /OT F(a)dadr

IIT Patna




Newtonian mechanics (contd.)

t
e Solving the equation we get t > 0, x(t) = x(0) +/ X(7)dr
0

t
e Rewriting, t >0, x(t)=x(0)+ /\1/1/ F(r)dr
0

e We have, x(t) = x(0) +/Ot)'((7)d7 — x(0) + tX(0 / /

e Rotational version of force is torque T(t) = & (I(t)O( )

e | - Moment of inertia (depends on the geometry and orientation)

a)dadT
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Newtonian mechanics (contd.)

t
e Solving the equation we get t > 0, x(t) = x(0) +/ X(7)dr
0

t
e Rewriting, t >0, x(t)=x(0)+ /\1/1/ F(r)dr
0

e We have, x(t) = x(0) +/Ot)'((7)d7 — x(0) + tX(0 / / o) da dr

e Rotational version of force is torque T(t) = & (I(t)O( )

e | - Moment of inertia (depends on the geometry and orientation)

o(t) = 6(0)+ t6(0 // a) da dr
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Helicopter model

e Helicopter has two rotors
e Main rotor to lift
e Tail rotor to counter balance spin

e Hence, we have
Oy(t) - Ty(t)//yy =

6,()=6,0)+ - [ T(r)er

Yy

Image source: Internet
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Actor model

e Physical system can be described by input (force, torque) and output (position, orien-
tation, velocity, rotation, etc.)

X y
—> S }—

e Usually X is time (domain) and Y value of particular signal (codomain)
e S: X —>Y, x,yeR
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Actor model

e Physical system can be described by input (force, torque) and output (position, orien-
tation, velocity, rotation, etc.)

X y
—> S }—

e Usually X is time (domain) and Y value of particular signal (codomain)
e S: X —>Y, x,yeR

e Example

T

— 1.0
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Actor model (contd.)

e Actor models are composable

X1 i X2
—> 5

VteR, y(t) = x(t)

5

Y2

IIT Patna




Actor model (contd.)

e Actor models are composable

X1 i X Yo
—P> 5 S,

VteR, y(t) = x(t)

e Example
X | X . | Y2
1; ; Y1 2 f i B
Helicopter

t . .
e WehaveVt € R y»(t) = /'+/ xo(7)dT where a =1/1,,,, i = 6,(0), xy = T, and y» = 6,
Jo
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Actor model (contd.)

e Actor can have multiple inputs
» | Y1

e Another useful building block is signal adder

N : AN G_}
XzT X2

o y(t) = xu(t) + x2(t), y(t) = x1(t) — x2(t)

L

X2
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Properties of systems

Causal system

Memoryless systems
Linear and time invariant
Stability

Feedback control
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Causal systems

Output depends only on current and past inputs

Consider a continuous time signal x

Let x|:<, represent restriction in time defined only for t < 7

Consider a continuous time system S : X — Y/, the system is causal if for all x;, x, € X
and 7 € R, X1|t§'r:X2‘t§7—:>5(X1)‘t§7—:5(x2)|t§r

Strictly causal V7 € R, Xi|i<r = %0|t<r = S(x1)|t<r = S(32)|e<r
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Causal systems

e Output depends only on current and past inputs

e Consider a continuous time signal x

e Let x|, represent restriction in time defined only for t < 7

e Consider a continuous time system S : X — Y/, the system is causal if for all x;, x, € X
and 7 € R, xi|i<r = Xolt<r = S(x1)|t<r = S(x2)|e<r

e Strictly causal V7 € R, xi|rer = X2|t<r = S(x1)|t<r = S(x0) <+

e Example

e Integrator is strictly causal
o Adder is not strictly causal but causal

e Strictly causal actors are good for continuous feedback system
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Memoryless systems

e A systems has memory if the output depends not only on the current inputs but also on
the past inputs

e Formally, S : X — Y the system is memoryless if there exist a function f : X — Y such
that for all x € X, (S(x))(t) = f(x(t)) forall t € R
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Memoryless systems

e A systems has memory if the output depends not only on the current inputs but also on
the past inputs

e Formally, S : X — Y the system is memoryless if there exist a function f : X — Y such
that for all x € X, (S(x))(t) = f(x(t)) forall t € R
e Example

e Integrator is not memoryless
e Adder is memoryless
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Linear and time invariant (LTI)

e A systems S : X — Y where X and Y are sets of signals is linear if it satisfies the
superposition property

Vxi,xa € X and Va,b € R S(ax; + bxa) = aS(x1) + bS(x2)

e Time invariance means that whether we apply an input to the system now or T seconds
from now, the output will be identical except for a time delay of T seconds.
e Let D, be the delay operator such that (D;(x))(t) = x(t — 1)
e For time invariance, S(D;(x)) = D;(5(x))
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Linear and time invariant (LTI)

e A systems S : X — Y where X and Y are sets of signals is linear if it satisfies the
superposition property

Vxi,xa € X and Va,b € R S(ax; + bxa) = aS(x1) + bS(x2)

e Time invariance means that whether we apply an input to the system now or T seconds
from now, the output will be identical except for a time delay of T seconds.
e Let D, be the delay operator such that (D;(x))(t) = x(t — 1)
e For time invariance, S(D;(x)) = D;(5(x))

o 0,(t) = ll/t T,(7)dr - LTI

yy J—o0
e Many systems are approximated to LTI
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Stability

e A system is bounded input bounded output stable if the output signal is bounded for all
inputs signals that are bounded

e Helicopter is unstable
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Feedback systems

e A system with feedback has directed cycle where an output from an actor is fed back to
affect an input of the same actor

X1 e X3 y

51 52 [
XQT_
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Example: No rotation

e Want to have 0 angular velocity
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Example: No rotation (contd.)

e Our equation remains the same, only input has changed.
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Example: No rotation (contd.)

e Our equation remains the same, only input has changed.

° éy(t) = éy(O) + ll /o T,(r)dr = éy(O) + /1/0 ((1) — Hy(T)) dr

Yy Yy
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Example: No rotation (contd.)

e Our equation remains the same, only input has changed.

° éy(t) = éy(O) + ll /o T,(r)dr = éy(O) + 1/0 ((1) — Hy(T)) dr

l

Yy Yy

o We have, e(t) = (t) — 0,(t), T,(t) = Ke(t)
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Example: No rotation (contd.)

e Our equation remains the same, only input has changed.

° éy(t) = éy(O) + ll /o T,(r)dr = éy(O) + 1/0 ((1) — Hy(T)) dr

l

Yy Yy

o We have, e(t) = (t) — 0,(t), T,(t) = Ke(t)

. . K [t.
e Reorganizing we get, 0,(t) = 6,(0) — l/ ,(t)dr
yy 40
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Example: No rotation (contd.)

e Our equation remains the same, only input has changed.

° éy(t) = éy(O) + ll /o T,(r)dr = éy(O) + 1/0 ((1) — Hy(T)) dr

Yy / Yy

o We have, e(t) = (t) — 0,(t), T,(t) = Ke(t)

. . K [t.
e Reorganizing we get, 0,(t) = 6,(0) — l/ ,(t)dr
yy 40

t
e We know, / ae’ dr = e®fu(t) — 1
0
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Example: No rotation (contd.)

e Our equation remains the same, only input has

. 1

o 0,(6)=0,(0)+ / T(r)dr = 0,(0) + -

Yy Yy

We have, e(t) = (t) — 0,(t), T,(t) = Ke(t)

/

3

t
We know, / ae’ dr = e®fu(t) — 1
0

Therefore we have, 6, (t) = 6, (0)e~ <t/ u(t)

changed.

/0 ((r) — b,(r)) dr

. . K [t.
Reorganizing we get, 0,(t) = 6,(0) — / ,(t)dr
0
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Example: Constant rotation

e Only input has changed. ¢(t) = au(t)
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Example: Constant rotation

e Only input has changed. (

t) = au
éy(t)_lyly/ot dT_IK/

))dt
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Example: Constant rotation

e Only input has changed. ¢(t) = au(t)

. 1 t K t .
0= - [ TAndr = [ (o - d(0)er
yy J0 yy JO
t K t K. K t
= 5 adr — — 0,(r)dT = Rat / 6, (r)dr
lyy 0 lyy 0 lyy lyy 0
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Example: Constant rotation

e Only input has changed. ¢(t) = au(t)

K
l

. 1 t K t .
0= - [ TAndr = [ (o - d(0)er
yy J0 yy JO
K [* K [t K.
=— [ adr—— [ 6,(r)dr = rat
/yy 0 /yy 0 /yy

o 0,(t) = au(t)(1 — /)

Yy

— /Otéy(T)dT
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