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Recurrent Neural Network

IIT Patna




Introduction

e Recurrent neural networks are used for processing sequential data in
general

e Convolution neural network is specialized for image

e Capable of processing variable length input
e Shares parameters across different part of the model

e Example: "l went to lIT in 2017” or "In 2017, | went to lIT”
e For traditional machine learning models require to learn rules for different posi-
tions
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Image source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Computational graph

e Formal way to represent the computation
e Unfolding the graph results in sharing of parameters

e Consider a system s(*) = f(s(:=")_ 9) where s*) denotes the state of the
system
e Itisrecurrent
e For finite number of steps, it can be unfolded
e Example: s®) = f(s? ) = f(f(s(, 9), 0)
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System with inputs

o A system will be represented as s(!) = f(s(:=") x(!) )
e A state contains information of whole past sequence

e Usually state is indicated as hidden units such that h() =
f(h(H)’ x(t), 0)

e While predicting, network learn h(t) as a kind of lossy summary of past
sequence upto t

e h( depends on (x(!) x(t="  x()
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System with inputs (contd.)

e Unfolded recursion after t steps will be h(t) = g((x(1) x(t=1  x(V) =
f(h(t—ﬂ) x®, 0)
e Unfolding process has some advantages

e Regardless of sequence length, learned model has same input size
e Uses the same transition function f with the same parameters at every time steps

e Can be trained with fewer examples
e Recurrent graph is succinct
e Unfolded graph illustrates the information flow
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Recurrent connection in hidden units
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Output to hidden unit connection




Sequence processing




Recurrent neural network

e Function computable by a Turing machine can be computed by such re-
current network of finite size

e tanh is usually chosen as activation function for hidden units

e Output can be considered as discrete, so o gives unnormalized log prob-
abilities

e Forward propagation begins with initial state h°

e So we have,
e a) = b+ Wh(t=" 4+ ux®
e h®) = tanh(a ())
e o) = ¢+ vh(®
o (V) = softmax(o("))

¢ Input and output have the same length
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Backpropagation through time

e The network will be unfolded and gradient will be back
propagated

e Number of stages need to be decided v
e Issue in gradient computation
e Vanishing gradients

e Exploding gradients

IIT Patna




Backpropagation through time

e The network will be unfolded and gradient will be back
propagated

e Number of stages need to be decided v
e Issue in gradient computation
e Vanishing gradients

e Exploding gradients
e Loss function

out

1

o £ = 5 Z()A’k - Yk)z,

k=1

IIT Patna 13




Backpropagation through time

e The network will be unfolded and gradient will be back
propagated

e Number of stages need to be decided v
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Backpropagation through time

e The network will be unfolded and gradient will be back
propagated

e Number of stages need to be decided
e Issue in gradient computation

e Vanishing gradients

e Exploding gradients
e Loss function
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k=1 t=1 k=1
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t=1 k=1
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Backpropagation through time

e Basic equations
ht UXt —+ W¢(ht—1)
Yt V¢(ht)




Backpropagation through time

e Basic equations
ht = UXt—|— W¢(ht—1)

Yt = V¢(ht)
e Gradient
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Backpropagation through time

e Basic equations
ht = UXt—|— WQb(ht_'])

Yt = V¢(ht)
e Gradient
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Backpropagation through time

e Basic equations
ht = Uxt—|— W¢(ht_1)

ye = Vo(hy)

° Gradient
OE 6Et OE;
W - .

t=1 k=1
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Backpropagation through time

e Basic equations
ht = Uxt—|— W¢(ht_1)

ye = Vo(hy)
° Gradient
8E 8Et 8Et aYt
8_W Z Z 8yt 6ht

t=1 k=1
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Backpropagation through time

e Basic equations
ht = Uxt—|— W¢(ht_1)

ye = Vo(hy)

° Gradient
OE 8Et OE¢ Oy Ohy
W~ ZZ By, Oh
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Backpropagation through time

e Basic equations
ht = Uxt—|— W¢(ht_1)

Yyt = V¢(ht)
° Gradient
OE 8Et 8Et 8yt 8ht (9hk
oW Z Z dy; Ohy Oh, OW

t=1 k=1
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Backpropagation through time

e Basic equations
ht = Uxt—|— W¢(ht_1)

Yyt = V¢(ht)
° Gradient
OE 8Et 8Et ﬁyt 8ht (9hk
oW ; kz_: dy; Ohy Oh, OW
e Now we have,
Oh;

Ohy
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Backpropagation through time

e Basic equations
ht = Uxt—|— W¢(ht_1)

yr = V¢(ht) v
° Gradient
OE 8Et 8Et ﬁyt 8ht (9hk 65

oW Z Z dy; Oh, Oh, OW v

t=1 k=1
e Now we have,
ohe 1 Oh;

oh, o Ohj_4
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Backpropagation through time

e Basic equations
ht = Uxt—f— W¢(ht_1)

Yyt = V¢(ht)
° Gradient
OE @Et 8Et (9yt 8ht 8hk
oW ; kz_: dy; Ohy Oh, OW
e Now we have,

ohe 11 Oh TT wtanor
o~ Ll 5 = [ [ w'diag[¢'(hi_1)]

i=k-+ i=k+1
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Backpropagation through time

e Issues in gradient

Oh; /
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LSTM

output

output gate

forget gate
input g | put gate |

Xt h;_
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LSTM

e Mathematical relation
it = 0(O0xiX¢ + Opihe_1 + by;)
fe = o(OxeXt + Onehi_1 + by)
0; = 0(OxoX; + Onohi_1 + by)
gt = tanh(Oygx: + Onghi_1 + bg)
¢t = ft © ¢+ it © gy
h; = o; ® tanh(c;)
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LSTM
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