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Regulariza�on
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Introduc�on
• In machine learning, target is to make an algorithm performs well not
only on training data but also on new data
• Many strategies exist to reduce test error at the cost of training error
• Any modifica�on we make to a learning algorithm that is intended to
reduce its generaliza�on error but not its training error
• Objec�ves
• To encode prior knowledge
• Constraints and penal�es are designed to express generic preference for simpler
model
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Regulariza�on in DL
• In DL regulariza�on works by trading increased bias for reduced vari-
ance
• Consider the following scenario
• Excluded the true data genera�ng process
• Underfi�ng, inducing bias
• Matched the true data genera�ng process
• Desired one
• Included the genera�ng process but also many other genera�ng process
• Overfi�ng, variance dominates
• Goal of regularizer is to take an model overfit zone to desired zone
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Norm penal�es
• Most of the regulariza�on approaches are based on limi�ng the ca-
pacity of the model
• Objec�ve func�on becomes J̃(θ; X, y) = J(θ; X, y) + αΩ(θ)
• α—Hyperparameter denotes rela�ve contribu�on
• Minimiza�on of J̃ implies minimiza�on of J
• Ω penalizes only the weight of affine transform
• Bias remain unregularized
• Regularizing bias may lead to underfi�ng
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L2 parameter regulariza�on
• Weights are closer to origin as Ω(θ) = 1

2‖w‖
2
2

• Also known as ridge regression or Tikhonov regression

• Objec�ve func�on J̃(w; X, y) =
α

2
wTw + J(w; X, y)

• Gradient∇w J̃(w; X, y) = αw +∇wJ(w; X, y)

• New weights
w = w − ε(αw +∇wJ(w; X, y)) = w(1− εα)− ε∇wJ(w; X, y)

• Assume quadra�c nature of curve in the neighborhood of w∗ =
argmin

w
J(w)

• J(w) — unregularized cost
• Perfect scenario for linear regression with MSE
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Jacobian & Hessian
• Deriva�ve of a func�on having single input and single output — dy

dx
• Deriva�ve of func�on having vector input and vector output that is,
f : Rm → Rn

• Jacobian J ∈ Rn×m of f defined as Ji,j = ∂
∂xj
f(x)i

• Second deriva�ve is also required some�me
• For example, f : Rn → R,

∂2

∂xi∂xj
f

• If second deriva�ve is 0, then there is no curvature

• Hessian matrix H(f)(x)ij =
∂2

∂xi∂xj
f(x)

• Jacobian of gradient
• Symmetric
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Direc�onal deriva�ve
• The direc�onal deriva�ve of a scalar func�on f(x) = f(x1, x2, . . . , xn)
along a vector v = (v1, . . . , vn) is given by

∇vf(x) = lim
h→0

f(x + hv)− f(x)

h

• If f is differen�able at point x then

∇vf(x) = ∇f(x) · v
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Taylor series expansion
• A real valued func�on differen�able at point x0 can be expressed as

f(x) = f(x0)+
f′(x0)

1!
(x−x0)+

f′′(x0)

2!
(x−x0)2+

f(3)(x0)

3!
(x−x0)3+ · · · .

• When input is a vector

f(x) ≈ f(x(0)) + (x − x(0))Tg +
1
2

(x − x(0))TH(x − x(0))

• g— gradient at x(0), H—Hessian at x(0)

• If ε is the learning rate, then f(x(0) − εg) = f(x(0))− εgTg +
1
2
ε2gTHg
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Quadra�c approxima�on
• Let w∗ = argminw J(w) op�mum weights for minimal unregularized
cost
• If the objec�ve func�on is quadra�c then Ĵ(θ) = J(w∗) +

1
2

(w −
w∗)TH(w −w∗)
• H is the Hessian matrix of J with respect to w at w∗

• No first order term as w∗ is minimum
• H is posi�ve semidefinite

• Minimum of Ĵ occurs when∇w Ĵ(w) = H(w −w∗) = 0
• With weight decay we have
αw̃ + H(w̃ −w∗) = 0⇒ (H + αI)w̃ = Hw∗ ⇒ w̃ = (H + αI)−1Hw∗
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Quadra�c approxima�on (contd)
• As α→ 0, regularized solu�on ŵ approaches to w∗
• As α→∞
• H is symmetric, therefore H = QΛQT. Now we have

w̃ = (QΛQT + αI)−1QΛQTw∗

= [Q(Λ + αI)QT]
−1 QΛQTw∗

= Q(Λ + αI)−1ΛQTw∗

• Weight decay rescale w∗ along the eigen vector of H
• Component ofw∗ that is aligned to i-th eigen vector, will be rescaled by a factor of λi

λi+α
• λi � α— regulariza�on effect is small
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L2 Norm
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Linear regression
• For linear regression cost func�on is (Xw − y)T(Xw − y)

• Using L2 regulariza�on we have (Xw − y)T(Xw − y) + 1
2αw

Tw

• Solu�on for normal equa�on w = (XTX)−1XTy
• Solu�on for with weight decay w = (XTX + αI)−1XTy
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L1 regulariza�on
• Formally it is defined as Ω(θ) = ‖w‖1 =

∑
i

|wi|

• Regularized objec�ve func�on will be J̃(w; X, y) = α‖w‖1 + J(w; X, y)

• The gradient will be∇w J̃(w; X, y) = αsign(w) +∇wJ(w; X, y)
• Gradient does not scale linearly compared to L2 regulariza�on

• Taylor series expansion with approxima�on provides ∇w Ĵ(w) =
H(w −w∗)
• Simplifica�on can be made by assuming H to be diagonal
• Apply PCA on the input dataset



IIT Patna 14

L1 regulariza�on
• Formally it is defined as Ω(θ) = ‖w‖1 =

∑
i

|wi|

• Regularized objec�ve func�on will be J̃(w; X, y) = α‖w‖1 + J(w; X, y)

• The gradient will be∇w J̃(w; X, y) = αsign(w) +∇wJ(w; X, y)
• Gradient does not scale linearly compared to L2 regulariza�on

• Taylor series expansion with approxima�on provides ∇w Ĵ(w) =
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L1 regulariza�on
• Quadra�c approxima�on of L1 regulariza�on objec�ve func�on be-
comes Ĵ(w; X, y) = J((w∗; X, y) +

∑
i
[ 1
2Hi,i(wi −w∗i )2 + α|wi|

]
• So, analy�cal solu�on in each dimension will be wi =

sign(w∗i )max
{
|w∗i | − α

Hi,i
,0
}

• Consider the situa�on when w∗i > 0
• If w∗

i ≤ α
Hi,i
, op�mal value for wi will be 0 under regulariza�on

• If w∗
i >

α
Hi,i
, wi moves towards 0 with a distance equal to α

Hi,i
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Constrained op�miza�on
• Cost func�on regularized by norm penalty is given by

J̃(θ; X, y) = J(θ; X, y) + αΩ(θ)

• Let us assume f(x) needs to be op�mized under a set of equality con-
straints g(i)(x) = 0 and inequality constraints h(j)(x) ≤ 0, then general-
ized Lagrangian is then defined as

L(x,λ,α) = f(x) +
∑
i

λig(i)(x) +
∑
j

αjh(j)(x)

• If there exists a solu�on then
min
x

max
λ

max
α≥0

L(x,λ,α) = min
x

f(x)

• This can be solved by∇x,λ,αL(x,λ,α) = 0
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Constraint op�miza�on (contd.)
• SupposeΩ(θ) < k needs to be sa�sfied. Then regulariza�on equa�on
becomes

L(θ, α; X, y) = J(θ; X, y) + α(Ω(θ)− k)

• Solu�on to the constrained problem

θ∗ = argmin
θ

max
α>0

L(θ, α)
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Dataset augmenta�on
• If data are limited, fake data can be added to training set
• Computer vision problem
• Speech recogni�on

• Easiest for classifica�on problem
• Very effec�ve in object recogni�on problem
• Transla�ng
• Rota�ng
• Scaling
• Need to be careful for ’b’ and ’d’ or ’6’ and ’9’

• Injec�ng noise to input data can be viewed as data augmenta�on
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Mul�task learning
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Early stopping
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Early stopping approach
• Ini�alize the parameters
• Run training algorithm for n steps and update i = i + n
• Compute error on the valida�on set (v′)
• If v′ is less than previous best, then update the same. Start step 2 again
• If v′ ismore than the previous best, then increment the count that stores
the number of such occurrences. If the count is less than a threshold go
to step 2, otherwise exit.
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Early stopping (contd)
• Number of training step is a hyperparameter
• Most hyperparameters that control model capacity have U-shaped curve
• Addi�onal cost for this approach is to store the parameters
• Requires a valida�on set
• It will have two passes
• First pass uses only training data for update of the parameters
• Second pass uses both training and valida�on data for update of the parameters
• Possible strategies
• Ini�alize the model again, retrain on all data, train for the same number of steps as ob-
tained by early stopping in pass 1
• Keep the parameters obtained from the first round, con�nue training using all data un�l
the loss is less than the training loss at the early stopping point

• It reduces computa�onal cost as it limits the number of itera�on
• Provides regulariza�on without any penalty
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Early stopping as regularizer
• Let us assume τ training itera�on, ε learning rate
• ετ —measures effec�ve capacity

• We have, Ĵ(θ) = J(w∗) + 1
2(w−w∗)H(w−w∗) and∇w Ĵ(w) = H(w−

w∗)
• Assume w(0) = 0
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Early stopping as regularizer (contd.)
• Approximate behavior of gradient descent provides

w(τ) = w(τ−1) − ε∇w Ĵ(w(τ−1))

w(τ) = w(τ−1) − εH(w(τ−1) −w∗)
w(τ) −w∗ = (I− εH)(w(τ−1) −w∗)
w(τ) −w∗ = (I− εQΛQT)(w(τ−1) −w∗)

QT(w(τ) −w∗) = (I− εΛ)QT(w(τ−1) −w∗)
QTw(τ) = [I− (I− εΛ)τ ]QTw∗
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Early stopping as regularizer (contd)
• Assuming w(0) = 0 and ε is small value such that |1− ελi| < 1
• From L2 regulariza�on, we have

QTw̃ = (Λ + αI)−1ΛQTw∗

QTw̃ = [I− (Λ + αI)−1α]QTw∗

• Therefore we have, (I− εΛ)τ = (Λ + αI)−1α
• Hence, τ ≈ 1

εα , α ≈
1
τε
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Bagging
• Also known as Bootstrap aggrega�ng
• Reduces generaliza�on error by combining several models
• Train mul�ple models then vote on output for the test example
• Also known as model averaging, ensemble method

• Suppose we have k regression model and each model makes an error
εi such that E(εi) = 0, E(ε2i ) = v, E(εiεj) = c

• Error made by average predic�on
1
k

∑
i

εi
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Bagging (contd.)
• Expected mean square error

E

( 1
k

∑
i

εi

)2
 =

1
k2
E

∑
i

ε2i +
∑
i6=j

εiεj

 =
v
k

+
k− 1
k

c
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Dropout
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Dropout
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Adversarial training


