Introduction to Deep Learning

Arijit Mondal
Dept. of Computer Science \& Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Regularization

Introduction

- In machine learning, target is to make an algorithm performs well not only on training data but also on new data
- Many strategies exist to reduce test error at the cost of training error
- Any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error
- Objectives
- To encode prior knowledge
- Constraints and penalties are designed to express generic preference for simpler model

Regularization in DL

- In DL regularization works by trading increased bias for reduced variance
- Consider the following scenario
- Excluded the true data generating process
- Underfitting, inducing bias
- Matched the true data generating process
- Desired one
- Included the generating process but also many other generating process
- Overfitting, variance dominates
- Goal of regularizer is to take an model overfit zone to desired zone

Norm penalties

- Most of the regularization approaches are based on limiting the capacity of the model
- Objective function becomes $\tilde{J}(\boldsymbol{\theta} ; \boldsymbol{X}, \boldsymbol{y})=J(\boldsymbol{\theta} ; \boldsymbol{X}, \boldsymbol{y})+\alpha \Omega(\boldsymbol{\theta})$
- α - Hyperparameter denotes relative contribution
- Minimization of \tilde{J} implies minimization of J
- Ω penalizes only the weight of affine transform
- Bias remain unregularized
- Regularizing bias may lead to underfitting

L^{2} parameter regularization

- Weights are closer to origin as $\Omega(\theta)=\frac{1}{2}\|\mathbf{w}\|_{2}^{2}$
- Also known as ridge regression or Tikhonov regression
- Objective function $\tilde{J}(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})=\frac{\alpha}{2} \mathbf{w}^{\top} \boldsymbol{w}+J(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})$

L^{2} parameter regularization

- Weights are closer to origin as $\Omega(\boldsymbol{\theta})=\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}$
- Also known as ridge regression or Tikhonov regression
- Objective function $\tilde{J}(\mathbf{w} ; \boldsymbol{X}, \boldsymbol{y})=\frac{\alpha}{2} \mathbf{w}^{\top} \mathbf{w}+J(\mathbf{w} ; \boldsymbol{X}, \boldsymbol{y})$
- Gradient $\nabla_{w}{ }_{\mathbf{w}}(\mathbf{w} ; \boldsymbol{X}, \boldsymbol{y})=\alpha \mathbf{w}+\nabla_{w} J(\mathbf{w} ; \boldsymbol{X}, \boldsymbol{y})$

L^{2} parameter regularization

- Weights are closer to origin as $\Omega(\theta)=\frac{1}{2}\|\mathbf{w}\|_{2}^{2}$
- Also known as ridge regression or Tikhonov regression
- Objective function $\tilde{J}(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})=\frac{\alpha}{2} \mathbf{w}^{\top} \mathbf{w}+J(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})$
- Gradient $\nabla_{w}{ }_{\mathbf{w}}(\mathbf{w} ; \boldsymbol{X}, \boldsymbol{y})=\alpha \mathbf{w}+\nabla_{w} J(\mathbf{w} ; \boldsymbol{X}, \boldsymbol{y})$
- New weights

$$
\mathbf{w}=\mathbf{w}-\epsilon\left(\alpha \mathbf{w}+\nabla_{\mathbf{w}} J(\mathbf{w} ; \boldsymbol{X}, \boldsymbol{y})\right)
$$

L^{2} parameter regularization

- Weights are closer to origin as $\Omega(\theta)=\frac{1}{2}\|\mathbf{w}\|_{2}^{2}$
- Also known as ridge regression or Tikhonov regression
- Objective function $\tilde{J}(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})=\frac{\alpha}{2} \mathbf{w}^{\top} \mathbf{w}+J(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})$
- Gradient $\nabla_{w}{ }_{\mathbf{w}}(\mathbf{w} ; \boldsymbol{X}, \boldsymbol{y})=\alpha \mathbf{w}+\nabla_{w} J(\mathbf{w} ; \boldsymbol{X}, \boldsymbol{y})$
- New weights

$$
\mathbf{w}=\mathbf{w}-\epsilon\left(\alpha \mathbf{w}+\nabla_{\mathbf{w}} J(\mathbf{w} ; \boldsymbol{X}, \boldsymbol{y})\right)=\mathbf{w}(1-\epsilon \alpha)-\epsilon \nabla_{\mathbf{w}} J(\mathbf{w} ; \boldsymbol{X}, \boldsymbol{y})
$$

L^{2} parameter regularization

- Weights are closer to origin as $\Omega(\boldsymbol{\theta})=\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}$
- Also known as ridge regression or Tikhonov regression
- Objective function $\tilde{J}(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})=\frac{\alpha}{2} \mathbf{w}^{\top} \mathbf{w}+J(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})$
- Gradient $\nabla_{w} \tilde{J}(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})=\alpha \mathbf{w}+\nabla_{w} J(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})$
- New weights

$$
\mathbf{w}=\mathbf{w}-\epsilon\left(\alpha \mathbf{w}+\nabla_{\mathbf{w}} J(\mathbf{w} ; \boldsymbol{X}, \boldsymbol{y})\right)=\mathbf{w}(1-\epsilon \alpha)-\epsilon \nabla_{\mathbf{w}} J(\mathbf{w} ; \boldsymbol{X}, \boldsymbol{y})
$$

- Assume quadratic nature of curve in the neighborhood of $w^{*}=$ $\arg \min _{w} J(w)$
- $J(w)$ - unregularized cost
- Perfect scenario for linear regression with MSE

Jacobian \& Hessian

- Derivative of a function having single input and single output $-\frac{d y}{d x}$
- Derivative of function having vector input and vector output that is, $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$
- Jacobian $J \in \mathbb{R}^{n \times m}$ of f defined as $J_{i, j}=\frac{\partial}{\partial x_{j}} f\left(x_{i}\right.$
- Second derivative is also required sometime
- For example, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f$
- If second derivative is 0 , then there is no curvature
- Hessian matrix $H(f)(x)_{i j}=\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(\boldsymbol{x})$

Jacobian \& Hessian

- Derivative of a function having single input and single output $-\frac{d y}{d x}$
- Derivative of function having vector input and vector output that is, $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$
- Jacobian $J \in \mathbb{R}^{n \times m}$ of f defined as $J_{i, j}=\frac{\partial}{\partial x_{j}} f(\boldsymbol{x})_{i}$
- Second derivative is also required sometime
- For example, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f$
- If second derivative is 0 , then there is no curvature
- Hessian matrix $H(f)(x)_{i j}=\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(\boldsymbol{x})$
- Jacobian of gradient
- Symmetric

Directional derivative

- The directional derivative of a scalar function $f(\mathbf{x})=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ along a vector $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ is given by

$$
\nabla_{\mathbf{v}} f(\mathbf{x})=\lim _{h \rightarrow 0} \frac{f(\mathbf{x}+h \mathbf{v})-f(\mathbf{x})}{h}
$$

- If f is differentiable at point x then

$$
\nabla_{\mathrm{v}} f(\mathbf{x})=\nabla f(\mathbf{x}) \cdot \mathbf{v}
$$

Taylor series expansion

- A real valued function differentiable at point x_{0} can be expressed as

$$
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\frac{f^{(3)}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3}+\cdots .
$$

Taylor series expansion

- A real valued function differentiable at point x_{0} can be expressed as

$$
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\frac{f^{(3)}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3}+\cdots .
$$

- When input is a vector

$$
f(\boldsymbol{x}) \approx f\left(\boldsymbol{x}^{(0)}\right)+\left(\boldsymbol{x}-\boldsymbol{x}^{(0)}\right)^{\top} \boldsymbol{g}+\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}^{(0)}\right)^{\top} \boldsymbol{H}\left(\boldsymbol{x}-\boldsymbol{x}^{(0)}\right)
$$

- $g-$ gradient at $x^{(0)}, H-$ Hessian at $x^{(0)}$

Taylor series expansion

- A real valued function differentiable at point x_{0} can be expressed as

$$
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\frac{f^{(3)}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3}+\cdots .
$$

- When input is a vector

$$
f(\boldsymbol{x}) \approx f\left(\boldsymbol{x}^{(0)}\right)+\left(\boldsymbol{x}-\mathbf{x}^{(0)}\right)^{\top} \boldsymbol{g}+\frac{1}{2}\left(\boldsymbol{x}-\mathbf{x}^{(0)}\right)^{\top} \boldsymbol{H}\left(\boldsymbol{x}-\boldsymbol{x}^{(0)}\right)
$$

- $g-$ gradient at $\boldsymbol{x}^{(0)}, H-$ Hessian at $\boldsymbol{x}^{(0)}$
- If ϵ is the learning rate, then $f\left(\boldsymbol{x}^{(0)}-\epsilon \boldsymbol{g}\right)=f\left(\boldsymbol{x}^{(0)}\right)-\epsilon \boldsymbol{g}^{\top} \boldsymbol{g}+\frac{1}{2} \epsilon^{2} \boldsymbol{g}^{\top} \boldsymbol{H g}$

Quadratic approximation

- Let $\boldsymbol{w}^{*}=\arg \min _{w} J(w)$ optimum weights for minimal unregularized cost
- If the objective function is quadratic then $\hat{\jmath}(\boldsymbol{\theta})=J\left(w^{*}\right)+\frac{1}{2}(w-$ $\left.w^{*}\right)^{\top} H\left(w-w^{*}\right)$
- H is the Hessian matrix of J with respect to w at w^{*}
- No first order term as \mathbf{w}^{*} is minimum
- H is positive semidefinite
- Minimum of $\hat{\jmath}$ occurs when $\nabla_{w} \hat{\jmath}(w)=\boldsymbol{H}\left(w-w^{*}\right)=0$
- With weight decay we have

$$
\alpha \tilde{\mathbf{w}}+\boldsymbol{H}\left(\tilde{\mathbf{w}}-\mathbf{w}^{*}\right)=0 \Rightarrow(\mathbf{H}+\alpha \mathbf{I}) \tilde{\mathbf{w}}=\mathbf{H} \mathbf{w}^{*} \Rightarrow \tilde{\mathbf{w}}=(\mathbf{H}+\alpha \mathbf{I})^{-1} \mathbf{H} \mathbf{w}^{*}
$$

Quadratic approximation (contd)

- As $\alpha \rightarrow 0$, regularized solution \hat{w} approaches to \mathbf{w}^{*}
- As $\alpha \rightarrow \infty$
- H is symmetric, therefore $H=Q \Lambda Q^{\top}$. Now we have

$$
\begin{aligned}
\tilde{\mathbf{w}} & =\left(\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top}+\alpha \mathbf{I}\right)^{-1} \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top} \mathbf{w}^{*} \\
& =\left[\mathbf{Q}\left(\boldsymbol{\Lambda}+\alpha \mathbf{I} \mathbf{Q}^{\top}\right]^{-1} \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top} \mathbf{w}^{*}\right. \\
& =\mathbf{Q}(\boldsymbol{\Lambda}+\alpha \mathbf{l})^{-1} \boldsymbol{\Lambda} \mathbf{Q}^{\top} \mathbf{w}^{*}
\end{aligned}
$$

- Weight decay rescale w^{*} along the eigen vector of H
- Component of w^{*} that is aligned to i-th eigen vector, will be rescaled by a factor of $\frac{\lambda_{i}}{\lambda_{i}+\alpha}$
- $\lambda_{i} \gg \alpha$ - regularization effect is small
L^{2} Norm

Linear regression

- For linear regression cost function is $(X w-y)^{\top}(X w-y)$
- Using L^{2} regularization we have $(X w-y)^{\top}(X w-y)+\frac{1}{2} \alpha w^{\top} w$

Linear regression

- For linear regression cost function is $(X w-y)^{\top}(X w-y)$
- Using L^{2} regularization we have $(X w-y)^{\top}(X w-y)+\frac{1}{2} \alpha w^{\top} w$
- Solution for normal equation $w=\left(X^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$

Linear regression

- For linear regression cost function is $(X w-y)^{\top}(X w-y)$
- Using L^{2} regularization we have $(X w-y)^{\top}(X w-y)+\frac{1}{2} \alpha w^{\top} w$
- Solution for normal equation $w=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$
- Solution for with weight decay $\mathbf{w}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}+\alpha \mathbf{I}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$

L^{1} regularization

- Formally it is defined as $\Omega(\theta)=\|\boldsymbol{w}\|_{1}=\sum_{i}\left|w_{i}\right|$
- Regularized objective function will be $\tilde{J}(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})=\alpha\|\boldsymbol{w}\|_{1}+J(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})$

L^{1} regularization

- Formally it is defined as $\Omega(\boldsymbol{\theta})=\|\boldsymbol{w}\|_{1}=\sum_{i}\left|w_{i}\right|$
- Regularized objective function will be $\tilde{J}(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})=\alpha\|\boldsymbol{w}\|_{1}+J(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})$
- The gradient will be $\nabla_{w} \tilde{J}(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})=\alpha \boldsymbol{\operatorname { s i g n }}(\boldsymbol{w})+\nabla_{\boldsymbol{w}} J(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})$
- Gradient does not scale linearly compared to L^{2} regularization
- Taylor series expansion with approximation provides $\nabla_{w} \hat{J}(w)=$ $H\left(w-w^{*}\right)$
- Simplification can be made by assuming H to be diagonal
- Apply PCA on the input dataset

L^{1} regularization

- Quadratic approximation of L^{1} regularization objective function becomes $\hat{J}(\boldsymbol{w} ; \boldsymbol{X}, \boldsymbol{y})=J\left(\left(\boldsymbol{w}^{*} ; \boldsymbol{X}, \boldsymbol{y}\right)+\sum_{i}\left[\frac{1}{2} H_{i, i}\left(\boldsymbol{w}_{i}-\mathbf{w}_{i}^{*}\right)^{2}+\alpha\left|w_{i}\right|\right]\right.$
- So, analytical solution in each dimension will be $w_{i}=$ $\operatorname{sign}\left(w_{i}^{*}\right) \max \left\{\left|w_{i}^{*}\right|-\frac{\alpha}{H_{i, i}}, 0\right\}$
- Consider the situation when $w_{i}^{*}>0$
- If $w_{i}^{*} \leq \frac{\alpha}{H_{i, i}}$, optimal value for w_{i} will be 0 under regularization
- If $w_{i}^{*}>\frac{\alpha}{H_{i, i}}, w_{i}$ moves towards \mathbf{O} with a distance equal to $\frac{\alpha}{H_{i, i}}$

Constrained optimization

- Cost function regularized by norm penalty is given by

$$
\tilde{\jmath}(\boldsymbol{\theta} ; \boldsymbol{X}, \boldsymbol{y})=J(\boldsymbol{\theta} ; \boldsymbol{X}, \boldsymbol{y})+\alpha \Omega(\boldsymbol{\theta})
$$

- Let us assume $f(x)$ needs to be optimized under a set of equality constraints $g^{(i)}(x)=0$ and inequality constraints $h^{(j)}(x) \leq 0$, then generalized Lagrangian is then defined as

$$
L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\alpha})=f(\mathbf{x})+\sum_{i} \lambda_{i} g^{(i)}(\mathbf{x})+\sum_{j} \alpha_{j} h^{(j)}(\mathbf{x})
$$

- If there exists a solution then

$$
\min _{x} \max _{\boldsymbol{\lambda}} \max _{\boldsymbol{\alpha} \geq 0} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\alpha})=\min _{x} f(\boldsymbol{x})
$$

- This can be solved by $\nabla_{x, \lambda, \alpha} L(x, \lambda, \alpha)=0$

Constraint optimization (contd.)

- Suppose $\Omega(\theta)<k$ needs to be satisfied. Then regularization equation becomes

$$
L(\boldsymbol{\theta}, \alpha ; \boldsymbol{X}, \boldsymbol{y})=J(\boldsymbol{\theta} ; \boldsymbol{X}, \boldsymbol{y})+\alpha(\Omega(\boldsymbol{\theta})-\boldsymbol{k})
$$

- Solution to the constrained problem

$$
\boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} \max _{\alpha>0} L(\boldsymbol{\theta}, \alpha)
$$

Dataset augmentation

- If data are limited, fake data can be added to training set
- Computer vision problem
- Speech recognition
- Easiest for classification problem
- Very effective in object recognition problem
- Translating
- Rotating
- Scaling
- Need to be careful for ' b ' and ' d ' or ' 6 ' and ' 9 '
- Injecting noise to input data can be viewed as data augmentation

Multitask learning

Image source: Deep Learning Book

Early stopping

Early stopping approach

- Initialize the parameters
- Run training algorithm for n steps and update $i=i+n$
- Compute error on the validation set (v^{\prime})
- If v^{\prime} is less than previous best, then update the same. Start step 2 again
- If v^{\prime} is more than the previous best, then increment the count that stores the number of such occurrences. If the count is less than a threshold go to step 2, otherwise exit.

Early stopping (contd)

- Number of training step is a hyperparameter
- Most hyperparameters that control model capacity have U-shaped curve
- Additional cost for this approach is to store the parameters
- Requires a validation set
- It will have two passes
- First pass uses only training data for update of the parameters
- Second pass uses both training and validation data for update of the parameters
- Possible strategies
- Initialize the model again, retrain on all data, train for the same number of steps as obtained by early stopping in pass 1
- Keep the parameters obtained from the first round, continue training using all data until the loss is less than the training loss at the early stopping point
- It reduces computational cost as it limits the number of iteration
- Provides regularization without any penalty

Early stopping as regularizer

- Let us assume τ training iteration, ϵ learning rate
- $\epsilon \tau$ - measures effective capacity
- We have, $\hat{\jmath}(\theta)=J\left(w^{*}\right)+\frac{1}{2}\left(w-w^{*}\right) H\left(w-w^{*}\right)$ and $\nabla_{w} \hat{\jmath}(w)=H(w-$ w^{*})
- Assume $\boldsymbol{w}^{(0)}=0$

Early stopping as regularizer (contd.)

- Approximate behavior of gradient descent provides

Early stopping as regularizer (contd.)

- Approximate behavior of gradient descent provides

$$
\mathbf{w}^{(\tau)}=\mathbf{w}^{(\tau-1)}-\epsilon \nabla_{\mathbf{w}} \hat{\jmath}\left(\mathbf{w}^{(\tau-1)}\right)
$$

Early stopping as regularizer (contd.)

- Approximate behavior of gradient descent provides

$$
\begin{aligned}
& \mathbf{w}^{(\tau)}=\mathbf{w}^{(\tau-1)}-\epsilon \nabla_{\mathbf{w}^{\prime}} \hat{\jmath}\left(\mathbf{w}^{(\tau-1)}\right) \\
& \mathbf{w}^{(\tau)}=\mathbf{w}^{(\tau-1)}-\epsilon \boldsymbol{H}\left(\mathbf{w}^{(\tau-1)}-\mathbf{w}^{*}\right)
\end{aligned}
$$

Early stopping as regularizer (contd.)

- Approximate behavior of gradient descent provides

$$
\begin{aligned}
\mathbf{w}^{(\tau)} & =\mathbf{w}^{(\tau-1)}-\epsilon \nabla_{\mathbf{w}} \hat{\jmath}\left(\mathbf{w}^{(\tau-1)}\right) \\
\mathbf{w}^{(\tau)} & =\mathbf{w}^{(\tau-1)}-\epsilon \mathbf{H}\left(\mathbf{w}^{(\tau-1)}-\mathbf{w}^{*}\right) \\
\mathbf{w}^{(\tau)}-\mathbf{w}^{*} & =(\mathbf{I}-\epsilon \boldsymbol{H})\left(\mathbf{w}^{(\tau-1)}-\mathbf{w}^{*}\right)
\end{aligned}
$$

Early stopping as regularizer (contd.)

- Approximate behavior of gradient descent provides

$$
\begin{aligned}
\mathbf{w}^{(\tau)} & =\mathbf{w}^{(\tau-1)}-\epsilon \nabla_{\mathbf{w}} \hat{\jmath}\left(\mathbf{w}^{(\tau-1)}\right) \\
\mathbf{w}^{(\tau)} & =\mathbf{w}^{(\tau-1)}-\epsilon \mathbf{H}\left(\mathbf{w}^{(\tau-1)}-\mathbf{w}^{*}\right) \\
\mathbf{w}^{(\tau)}-\mathbf{w}^{*} & =(\mathbf{I}-\epsilon \mathbf{H})\left(\mathbf{w}^{(\tau-1)}-\mathbf{w}^{*}\right) \\
\mathbf{w}^{(\tau)}-\mathbf{w}^{*} & =\left(\mathbf{I}-\epsilon \mathbf{Q} \Lambda \mathbf{Q}^{T}\right)\left(\mathbf{w}^{(\tau-1)}-\mathbf{w}^{*}\right)
\end{aligned}
$$

Early stopping as regularizer (contd.)

- Approximate behavior of gradient descent provides

$$
\begin{aligned}
\mathbf{w}^{(\tau)} & =\mathbf{w}^{(\tau-1)}-\epsilon \nabla_{\mathbf{w}^{\prime}}\left(\mathbf{w}^{(\tau-1)}\right) \\
\mathbf{w}^{(\tau)} & =\mathbf{w}^{(\tau-1)}-\epsilon \boldsymbol{H}\left(\mathbf{w}^{(\tau-1)}-\mathbf{w}^{*}\right) \\
\mathbf{w}^{(\tau)}-\mathbf{w}^{*} & =(\boldsymbol{I}-\epsilon \boldsymbol{H})\left(\mathbf{w}^{(\tau-1)}-\mathbf{w}^{*}\right) \\
\mathbf{w}^{(\tau)}-\mathbf{w}^{*} & =\left(\mathbf{I}-\epsilon \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{T}\right)\left(\mathbf{w}^{(\tau-1)}-\mathbf{w}^{*}\right) \\
\mathbf{Q}^{\top}\left(\mathbf{w}^{(\tau)}-\mathbf{w}^{*}\right) & =(\mathbf{I}-\epsilon \boldsymbol{\Lambda}) \mathbf{Q}^{T}\left(\mathbf{w}^{(\tau-1)}-\mathbf{w}^{*}\right)
\end{aligned}
$$

Early stopping as regularizer (contd.)

- Approximate behavior of gradient descent provides

$$
\begin{aligned}
\mathbf{w}^{(\tau)} & =\mathbf{w}^{(\tau-1)}-\epsilon \nabla_{\mathbf{w}} \hat{\mathbf{\jmath}}\left(\mathbf{w}^{(\tau-1)}\right) \\
\mathbf{w}^{(\tau)} & =\mathbf{w}^{(\tau-1)}-\epsilon \boldsymbol{H}\left(\boldsymbol{w}^{(\tau-1)}-\mathbf{w}^{*}\right) \\
\mathbf{w}^{(\tau)}-\mathbf{w}^{*} & =(\mathbf{I}-\epsilon \boldsymbol{H})\left(\mathbf{w}^{(\tau-1)}-\mathbf{w}^{*}\right) \\
\mathbf{w}^{(\tau)}-\mathbf{w}^{*} & =\left(\mathbf{I}-\epsilon \mathbf{Q} \mathbf{Q ^ { \top }}\right)\left(\mathbf{w}^{(\tau-1)}-\mathbf{w}^{*}\right) \\
\mathbf{Q}^{\top}\left(\boldsymbol{w}^{(\tau)}-\mathbf{w}^{*}\right) & =(\mathbf{I}-\epsilon \boldsymbol{\Lambda}) \mathbf{Q}^{\top}\left(\mathbf{w}^{(\tau-1)}-\mathbf{w}^{*}\right) \\
\mathbf{Q}^{\top} \mathbf{w}^{(\tau)} & =\left[\mathbf{I}-(\mathbf{I}-\epsilon \boldsymbol{\Lambda})^{\tau}\right] \mathbf{Q}^{\top} \mathbf{w}^{*}
\end{aligned}
$$

Early stopping as regularizer (contd)

- Assuming $\mathbf{w}^{(0)}=0$ and ϵ is small value such that $\left|1-\epsilon \lambda_{i}\right|<1$
- From L^{2} regularization, we have

$$
\begin{aligned}
\mathbf{Q}^{\top} \tilde{\mathbf{w}} & =(\boldsymbol{\Lambda}+\alpha \mathbf{I})^{-1} \boldsymbol{\Lambda} \mathbf{Q}^{\top} \mathbf{w}^{*} \\
\mathbf{Q}^{\top} \tilde{\mathbf{w}} & =\left[\mathbf{I}-(\boldsymbol{\Lambda}+\alpha \mathbf{I})^{-1} \alpha\right] \mathbf{Q}^{\top} \mathbf{w}^{*}
\end{aligned}
$$

- Therefore we have, $(I-\epsilon \Lambda)^{\tau}=(\Lambda+\alpha I)^{-1} \alpha$
- Hence, $\tau \approx \frac{1}{\epsilon \alpha}, \alpha \approx \frac{1}{\tau \epsilon}$

Bagging

- Also known as Bootstrap aggregating
- Reduces generalization error by combining several models
- Train multiple models then vote on output for the test example
- Also known as model averaging, ensemble method
- Suppose we have k regression model and each model makes an error
ϵ_{i} such that $\mathbb{E}\left(\epsilon_{i}\right)=0, \mathbb{E}\left(\epsilon_{i}^{2}\right)=v, \mathbb{E}\left(\epsilon_{i} \epsilon_{j}\right)=c$
- Error made by average prediction

Bagging (contd.)

- Expected mean square error

$$
\mathbb{E}\left[\left(\frac{1}{k} \sum_{i} \epsilon_{i}\right)^{2}\right]=\frac{1}{k^{2}} \mathbb{E}\left[\sum_{i}\left(\epsilon_{i}^{2}+\sum_{i \neq j} \epsilon_{i} \epsilon_{j}\right)\right]=\frac{v}{k}+\frac{k-1}{k} c
$$

Dropout

Image source: Deep Learning Book

Dropout

Adversarial training

Image source: Deep Learning Book

