Introduction to Deep Learningl

Arijit Mondal

Dept. of Computer Science & Engineering
Indian Institute of Technology Patna
arijit@iitp.ac.in

IIT Patna




Deep Feedforward Networks




Deep feedforward networks

e Also known as feedforward neural network or multilayer perceptron

IIT Patna




Deep feedforward networks

e Also known as feedforward neural network or multilayer perceptron
e Goal of such network is to approximate some function f*
e For classifier, x is mapped to category y ie. y = f*(x)
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¢ A feedforward network maps y = f(x; @) and learns 6 for which the result is the
best function approximation

e Information flows from input to intermediate to output
e No feedback, directed acyclic graph
e For general model, it can have feedback and known as recurrent neural network

IIT Patna




Deep feedforward networks

e Also known as feedforward neural network or multilayer perceptron
e Goal of such network is to approximate some function f*

e For classifier, x is mapped to category y ie. y = f*(x)
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Deep feedforward networks

e Also known as feedforward neural network or multilayer perceptron

e Goal of such network is to approximate some function f*

e For classifier, x is mapped to category y ie. y = f*(x)

¢ A feedforward network maps y = f(x; @) and learns 6 for which the result is the

best function approximation

e Information flows from input to intermediate to output

e No feedback, directed acyclic graph

e For general model, it can have feedback and known as recurrent neural network
e Typically it represents composition of functions

e Three functions f(), f?) f(®) are connected in chain
e Overall function realized is f(x) = f® (f?(f((x)))
e The number of layers provides the depth of the model

e Goal of NN is not to model brain accurately!
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Issues with linear FFN

e Fit well for linear and logistic regression
e Convex optimization technique may be used
e Capacity of such function is limited

e Model cannot understand interaction between any two variables
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Overcome issues of linear FFN

e Transform x (input) into ¢(x) where ¢ is nonlinear transformation
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Overcome issues of linear FFN

e Transform x (input) into ¢(x) where ¢ is nonlinear transformation
e How to choose ¢?
e Use a very generic ¢ of high dimension

e Enough capacity but may result in poor generalization

e Very generic feature mapping usually based on principle of local smoothness
e Do not encode enough prior information

e Manually design ¢
e Require domain knowledge
e Strategy of deep learning is to learn ¢
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Goal of deep learning

e We have a model y = f(x; 0, w) = ¢(x; 0)'w
e We use 6 to learn ¢
e w and ¢ determines the output. ¢ defines the hidden layer

e It looses the convexity of the training problem but benefits a lot
e Representation is parameterized as ¢(x, 6)

e 0 can be determined by solving optimization problem
e Advantages

e ¢ can be very generic
e Human practitioner can encode their knowledge to designing ¢(x; 6)
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Design issues of feedforward network

e Choice of optimizer

e Cost function

e The form of output unit

e Choice of activation function

e Design of architecture - number of layers, number of units in each layer
e Computation of gradients
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Example

e Let us choose XOR function
e Target function is y = f*(x) and our model provides y = f(x; )
e Learning algorithm will choose the parameters 6 to make f close to f*
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Example

e Let us choose XOR function
e Target function is y = f*(x) and our model provides y = f(x; )
e Learning algorithm will choose the parameters 6 to make f close to f*
e Target is to fit output for X = {[0,0]", [0,1]", [1,0]", [1,1]"}
e This can be treated as reg1ression problem and MSE error can be chosen
. * PNY
as loss function (J(0) = 7 ;(f (x) — f(x;0)))
e We need to choose f(x; ) where 6 depends on w and b

e Let us consider a linear model f(x; w, b) = x'w + b
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Example

e Let us choose XOR function
e Target function is y = f*(x) and our model provides y = f(x; )
e Learning algorithm will choose the parameters 6 to make f close to f*
e Target is to fit output for X = {[0,0]", [0,1]", [1,0]", [1,1]"}
e This can be treated as reg1ression problem and MSE error can be chosen
. * PNY
as loss function (J(0) = 7 ;(f (x) — f(x;0)))
e We need to choose f(x; ) where 6 depends on w and b

e Let us consider a linear model f(x; w, b) = x'w + b
e Solving these, we getw = Oand b = ]

IIT Patna 9




Simple FFN with hidden layer

e Let us assume that the hidden unit h computes
fO(x; W, ¢)
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Simple FFN with hidden layer

e Let us assume that the hidden unit h computes
f(1)(x; W, c)

o In the next layer y = f?)(h; w, b) is computed

e Complete model f(x; W, c,w. b) = f@(f()(x))

e Suppose f(!)(x) = W'xand f(h) = h'w then f(x) =
w'WTx
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Simple FFN with hidden layer (contd.)

e We need to have nonlinear function to describe the
features

e Usually NN have affine transformation of learned
parameters followed by nonlinear activation func-
tion

o Letususe h = g(W'x + c)

e Let us use RelU as activation function g(z
max{0, z} ° @

e gis chosen element wise h; = g(x'W.; + ¢;)
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Simple FFN with hidden layer (contd.)

e Complete network is f(x; W, c,w, b) = w' max{O,W'x +c} + b




Simple FFN with hidden layer (contd.)

e Complete network is f(x; W, c,w, b) = w max{O,W'x +c} + b
e A solution for XOR problem can be as follows

11 0 1
oW—{1 1],c—{_1 ,w—{_z],b—o
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Simple FFN with hidden layer (contd.)

e Complete network is f(x; W, c,w, b) = w max{O,W'x +c} + b
e A solution for XOR problem can be as follows

11 0 1
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Simple FFN with hidden layer (contd.)

e Complete network is f(x; W, c,w, b) = w max{O,W'x +c} + b
e A solution for XOR problem can be as follows

11 0 1
oW—{1 1],c—{_1 ,w—{_z],b—o

e Now we have
, add bias c

N = = O
N = = O

IIT Patna




Simple FFN with hidden layer (contd.)

e Complete network is f(x; W, c,w, b) = w max{O,W'x +c} + b
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Simple FFN with hidden layer (contd.)

e Complete network is f(x; W, c,w, b) = w max{O,W'x +c} + b
e A solution for XOR problem can be as follows

11 0 1
oW—{1 1],c—{_1 ,w—{_z],b—o

e Now we have
, add bias c

,apply h

N = = O
N = = O
N = = O
-~ 00
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Simple FFN with hidden layer (contd.)

e Complete network is f(x; W, c,w, b) = w max{O,W'x +c} + b
e A solution for XOR problem can be as follows

11 0 1
oW—{1 1],c—{_1 ,w—{_z],b—o

e Now we have

0O 0 0O 0 0 -1 00
1 0 1 1 . 1 O 1 0
o X = 0 1 , XW = 11 , add bias c 1 0 ,apply h 10
1 1 2 2 2 1 2 1
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Simple FFN with hidden layer (contd.)

e Complete network is f(x; W, c,w, b) = w max{O,W'x +c} + b
e A solution for XOR problem can be as follows

11 0 1
oW—{1 1],c—{_1 ,w—{_z],b—o

e Now we have
, add bias c

,apply h , multi-

N = = O
N = = O
N = = O
N = = O
~ 00O

- O O

ply with w
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Simple FFN with hidden layer (contd.)

e Complete network is f(x; W, c,w, b) = w max{O,W'x +c} + b
e A solution for XOR problem can be as follows

11 0 1
oW—{1 1],c—{_1 ,w—{_z],b—o

e Now we have

00 00 0 —1 00
1 0 1 1 . 1 O 1 0 .
o X = 0 1 , XW = 11 , add bias c 1 0 ,apply h 10 , multi-
1 1 2 2 2 1 2 1
0]
. 1
ply with w 1
0
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Gradient based learning

e Similar to machine learning tasks, gradient descent based learning is
used

e Need to specify optimization procedure, cost function and model family

e For NN, model is nonlinear and function becomes nonconvex
e Usually trained by iterative, gradient based optimizer

¢ Solved by using gradient descent or stochastic gradient descent (SGD)
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Gradient descent

e For a function y = f(x), derivative (slope at point x) of it is f'(x) = %

e A small change in the input can cause output to move to a value given
by f(x + €) = f(x) + f'(x)

e We need to take a jump so that y reduces (assuming minimization prob-
lem)

e We can say that f(x — esign(f'(x))) is less than f(x)
e For multiple inputs partial derivatives are used ie. %f(x)
e Gradient vector is represented as V,f(x)

e Gradient descent proposes a new point as x' = x — ¢V,f(x) where ¢ is
the learning rate
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Stochastic gradient descent

e Large training set are necessary for good generalization
e Cost function used for optimizationis J(0) = L > [ (x() y() )

m i=1

e Gradient descent requires VJ(0) = L 37 VoL (xU), y() 0)
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e Computation cost is O(m)
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Stochastic gradient descent

e Large training set are necessary for good generalization
e Cost function used for optimization is J(8) = 1 5" L(x(), y() 9)
e Gradient descent requires VJ(0) = L 37 VoL (xU), y() 0)

e Computation cost is O(m)

e For SGD, gradient is an expectation estimated from a small sample
known as minibatch (B = {x()_ ... x(m)1)

. - 1 & -
e Estimated gradient is g — o 2_1: VgL(x( )y, 0)

e New point willbe 8 = 0 — cg
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Cost function

e Similar to other parametric model like linear models
e Parametric model defines distribution p(y|x; 6)

e Principle of maximum likelihood is used (cross entropy between train-
ing data and model prediction)

e Instead of predicting the whole distribution of y, some statistic of y
conditioned on x is predicted

e |t can also contain regularization term
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Maximum likelihood estimation

e Consider a set of m examples X = {x(”, . ,x(m)} drawn independently
from the true but unknown data generating distribution p,(x)

e Let podei(X; 0) be a parametric family of probability distribution
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Maximum likelihood estimation

e Consider a set of m examples X = {x(V, ... x(™1 drawn independently
from the true but unknown data generating distribution p,(x)

e Let podei(X; 0) be a parametric family of probability distribution
e Maximum likelihood estimator for @ is defined as

m
Om = arg méax mede/(X; 0) = arg meax 11 pmodel(x(i); 9)
=
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Maximum likelihood estimation

e Consider a set of m examples X = {x(V, ... x(™1 drawn independently
from the true but unknown data generating distribution p,(x)

e Let podei(X; 0) be a parametric family of probability distribution

e Maximum likelihood estimator for @ is defined as

m
Om = arg méax mede/(X; 0) = arg meax 11 pmodel(x(i); 9)
=
m

e It can be written as 6,,, = arg max Z 10 Prmodel(X7; 0)
i—1
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Maximum likelihood estimation

e Consider a set of m examples X = {x(V, ... x(™1 drawn independently
from the true but unknown data generating distribution p,(x)

e Let podei(X; 0) be a parametric family of probability distribution
e Maximum likelihood estimator for @ is defined as

m
Om = arg méax mede/(X; 0) = arg meax 11 pmodel(x(i); 9)
1=
m
e It can be written as 6, = arg max Z 10 Prmodel(X7; 0)
i=1
e By dividing m we get 6, = arg meax Expye 108 Pmoder(X; )
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Maximum likelihood estimation (cont.)

e Minimizing dissimilarity between the empirical p,,:, and model distri-
bution p,..4. and it is measured by KL divergence

Dii(Pdatal|Pmoder) = arg mein Expy., [108 Pdata(X) — 108 Pmodel(X; 0)]
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Maximum likelihood estimation (cont.)

e Minimizing dissimilarity between the empirical p,,:, and model distri-
bution p,..4. and it is measured by KL divergence

Dii(Pdatal|Pmoder) = arg mein Expy., [108 Pdata(X) — 108 Pmodel(X; 0)]

e We need to minimize — arg mgin Ex-pui 108 Pmoder(X; 6)
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Conditional log-likelihood

¢ In most of the supervised learning we estimate P(y/|x; 0)

e If X be the all inputs and Y be observed targets then conditional max-
imum likelihood estimator is 6, = arg max P(Y|X; 0)

o If the examples are assumed to be i.i.d then we can say

O = log P(y?|x(); 6
ML argm@axz og P(y""|x\"; 9)

i=1
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Linear regression as maximum likelihood

e Instead of producing single prediction y for a given x, we assume the
model produces conditional distribution p(y/|x)

e For infinitely large training set, we can observe multiple examples hav-
ing the same x but different values of y

e Goal is to fit the distribution p(y|x)
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Linear regression as maximum likelihood

e Instead of producing single prediction y for a given x, we assume the
model produces conditional distribution p(y/|x)

e For infinitely large training set, we can observe multiple examples hav-
ing the same x but different values of y

e Goal is to fit the distribution p(y|x)
e Let us assume, p(y|x) = N (y; y(x; w), 0?)

e Since the examples are assumed to be i.i.d, conditional log-likelihood is
given by
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i=1
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Linear regression as maximum likelihood

e Instead of producing single prediction y for a given x, we assume the
model produces conditional distribution p(y/|x)

e For infinitely large training set, we can observe multiple examples hav-
ing the same x but different values of y
e Goal is to fit the distribution p(y|x)
e Let us assume, p(y|x) = N (y; y(x; w), 0?)
e Since the examples are assumed to be i.i.d, conditional log-likelihood is
given by
m (i) HZ

oz p(v)ixD: 8) — —m| __| (2 19 =112
;ogp(y x\"; 9) mlog o og(2m) Z 5

o2

IIT Patna 20




Learning conditional distributions

e Usually neural networks are trained using maximum likelihood. There-
fore the cost function is negative log-likelihood. Also known as cross
entropy between training data and model distribution

e Cost function J(0) = —Eyx y5,... 108 Pmodel(¥|X, 0)

e Uniform across different models
e Gradient of cost function is very much crucial

e Large and predictable gradient can serve good guide for learning process
e Function that saturates will have small gradient

e Activation function usually produces values in a bounded zone (saturates)
o Negative log-likelihood can overcome some of the problems

e Output unit having exp function can saturate for high negative value
o Log-likelihood cost function undoes the exp of some output functions
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Learning conditional statistics

e Instead of learning the whole distribution p(y
one conditional statistics of y given x

e For a predicting function f(x; ), we would like to predict the mean of y

x; 0), we want to learn
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Learning conditional statistics

e Instead of learning the whole distribution p(y
one conditional statistics of y given x

e For a predicting function f(x; ), we would like to predict the mean of y

x; 0), we want to learn

e Neural network can represent any function f from a very wide range of
functions

e Range of function is limited by features like continuity, boundedness,
etc.
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Learning conditional statistics

e Instead of learning the whole distribution p(y
one conditional statistics of y given x

e For a predicting function f(x; ), we would like to predict the mean of y

x; 0), we want to learn

e Neural network can represent any function f from a very wide range of
functions

e Range of function is limited by features like continuity, boundedness,
etc.

e Cost function becomes functional rather than a function
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Learning conditional statistics

e Need to solve the optimization problem
f* = argmin Exy., [y — F(0)]
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Learning conditional statistics

e Need to solve the optimization problem
y —f(x)]*

e Using calculus of variation, it gives f*(x) = Ey_,..y0[Y]
e Mean of y for each value of x

% .
f - arg mfln EXvYdiata
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Learning conditional statistics

e Need to solve the optimization problem
y —f(x)]*

e Using calculus of variation, it gives f*(x) = Ey_,..y0[Y]
e Mean of y for each value of x
e Using a different cost function f* = arg mfin EX Y~pota

% .
f - arg mfln EXvYdiata

y — F(x)]ls
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Learning conditional statistics

e Need to solve the optimization problem
y —f(x)]*

e Using calculus of variation, it gives f*(x) = Ey_,..y0[Y]
e Mean of y for each value of x
e Using a different cost function f* = arg mfin EX Y~pota

x .
f - arg mfln EX,YNPdata

y — F(x)]ls

e Median of y for each value of x

IIT Patna
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Calculus of variation

e Let us consider functional J[y| = / L(x, y(x),y'(x)) dx
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Calculus of variation

e Let us consider functional J[y| = / L(x, y(x),y'(x)) dx

e Let J[y] has local minima at f. Therefore, we can say JIf] < JIf +en)
e 7 is an arbitrary function of x such that 7(x;) = n(x,) = O and differentiable
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e Let us consider functional J[y| = / L(x, y(x),y'(x)) dx

e Let J[y] has local minima at f. Therefore, we can say JIf] < JIf +en)
e 7 is an arbitrary function of x such that 7(x;) = n(x,) = O and differentiable

do
e Let us assume ®(c) = J[f + 7). Therefore, ¥'(0) = =

B d_gs:o a
X2 dL
- d
/X1 de X

e=0
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Calculus of variation

e Let us consider functional J[y| = / L(x, y(x),y'(x)) dx

e Let J[y] has local minima at f. Therefore, we can say JIf] < JIf +en)
e 7 is an arbitrary function of x such that 7(x;) = n(x,) = O and differentiable

do
e Let us assume ®(c) = J[f + 7). Therefore, ¥'(0) = =
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X2 dL
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Lde X
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Calculus of variation

e Let us consider functional J[y| = / L(x, y(x),y'(x)) dx

e Let J[y] has local minima at f. Therefore, we can say JIf] < JIf +en)
e 7 is an arbitrary function of x such that 7(x;) = n(x,) = O and differentiable
do

e Let us assume ®(c) = J[f + en|. Therefore, d'(0) = 0 —
€ e=0
X2 dL
/ — dx =20
X1 dg =0
oL _ oLy oLy

e Now we can say, d_g = 8_ydg + By’ de
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Calculus of variation

e Let us consider functional J[y| = / L(x, y(x),y'(x)) dx

e Let J[y] has local minima at f. Therefore, we can say JIf] < JIf +en)

e 7 is an arbitrary function of x such that 7(x;) = n(x,) = O and differentiable
do
e Let us assume ®(c) = J[f + 7). Therefore, ¥'(0) = =

€ e=0
2 dL
/ — dx =0
X1 de e=0

Now we can sa dL_ oLdy + oL dy
® y — = ——— -
Y de Oyde 0y de

dL
e Aswehavey = f +cenandy = f + c1/, therefore, o
£
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Calculus of variation

e Let us consider functional J[y| = / L(x, y(x),y'(x)) dx

e Let J[y] has local minima at f. Therefore, we can say JIf] < JIf +en)
e 7 is an arbitrary function of x such that 7(x;) = n(x,) = O and differentiable

do
e Let us assume ®(c) = J[f + en|. Therefore, d'(0) = - _
€ =0
X2 dL
/ — dx =0
X1 de e=0
e Now we can sa % — %ﬂ 4+ ﬂd_yl
Y, de dyds ' Oy de
oL oL

/

dL
As we have y — enandy = f' + <1/, therefore, — = — —
o y=f+en y' =f +en e ay”+ay/77
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Calculus of variation (contd.)

X2 oL oL
E_de —/X1 <0_fn+0_f/n/> dx

e Now we have

/ 2 dL
x de
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Calculus of variation (contd.)

x oL oL
dx = 4+ —n')d
e=0 g /X1 <afn+0f/n> g

_/X2 oL 4oLy oo
~ /o \of" TaxoF of"

e Now we have

/ 2 dL
x de

X1

25
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Calculus of variation (contd.)

x oL oL
dx = 4+ —n')d
e=0 g /X1 <af77+8f/77> g

_/X2 oL 4oLy oo
~ /o \of" TaxoF of"

oHence/ n(%—%%) dx =0

e Now we have

/ 2 dL
x de

X1

25
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Calculus of variation (contd.)

x oL oL
dx = 4+ —n')d
e=0 g /X1 <af77+8f/77> g

_/X2 oL 4oLy oo
~ /o \of" TaxoF of"

oHence/ n(%—%;—;) dx =0

Euler-Lagrange equation oL d oL 0
[ ] - _ — —— =
grange ed O dxof

e Now we have

/ 2 dL
x de
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Example
e Let us consider distance between two points Aly]

AT ORdx

° Y’(X) = ac Y1 = f(X1)7 Y2 = f(Xz)
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Example

e Let us
X2

consider

distance between two points Aly]

1+ [y'(x)]? dx

X1

d
oy’(x):d—i,

oL

e We have, (‘3_f

Yi= f(X1) , Y2 = f(Xz)

d OL
— —— =0wherelL =

dx OF HHreIr
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Example

e Let us consider distance between two points Aly]
X2
1+ [y'(x)]? dx

X1

L yl(x) - j)): , Y1 = f(X1) , Yo = f(XZ)
oL d oL
_—— —— = — / 2
e We have, 9F ~ dxoF O where L 1+ [f(x)]

e d oL
e As f does not appear explicitly in L, hence —— =

dx Of
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Example

e Let us consider distance between two points Aly]

/ T P dx

dy

° Y’(X) = dx’ Y1 = f(X1)7 Y2 = f(Xz)
oL d oL
e We have, a_f — aa—f/ = Owhere L = 1 + [](/(X)]2
e d oL
e As f does not appear explicitly in L, hence —— =0
dx Of'

d  fx

e Now we have, — —
dx \/1+ [f'(x)]?
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Example

e Taking derivative we get

d2

1

dx2

VPO |

3 =0
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Example

e Taking derivative we get

d2

e Therefore we have, —
dx?

d*f 1

VR e

0

3 =0
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Example

. — d*f 1
e Taking derivative we get il ;=0
< VIFTFOP
d2
e Therefore we have, — = 0
dx?

Yo — W1 X2Y1 — X1Y2
andph = ——~—~°
X2 — Xy X2 — Xq

e Hence we have f(x) = mx + b with m =
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Output units

e Choice of cost function is directly related with the choice of output
function

e In most cases cost function is determined by cross entropy between
data and model distribution

e Any kind of output unit can be used as hidden unit
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Linear units

e Suited for Gaussian output distribution
e Given features h, linear output unit producesy = W'h + b
e This can be treated as conditional probability p(y|x) = N (y; y,1)

e Maximizing log-likelihood is equivalent to minimizing mean square er-
ror
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Sigmoid unit

e Mostly suited for binary classification problem that is Bernoulli output
distribution
e The neural networks need to predict p(y = 1|x)

e If linear unit has been chosen, p(y = 1|x) = max {0, min{1, W'h + b} }
e Gradient?

e Model should have strong gradient whenever the answer is wrong
e Let us assume unnormalized log probability is linear withz = W'h + b

e Therefore, log P(y) = yz = P(y) = exp(yz) = P(y) = ZY/G?:?}(g)p(y’z)

e It can be written as P(y) = o((2y — 1)z)

e The loss function for maximum likelihood is
J(0) = —log P(y|x) = —log o((2y — 1)z) = ¢((1 — 2y)2)
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Softmax unit

e Similar to sigmoid. Mostly suited for multinoulli distribution
e We need to predict a vector y such that §; = P(Y = i|x)

e A linear layer predicts unnormalized probabilities z = W'h + b that is
zi = log P(y = i|x)

exp z;
e Formally, softmax(z); = _SXPZ4
>_;exp(z)
e Login log-likelihood can undo exp log softmax(z —log Z exp(z))

e Does it saturate?
e What about incorrect prediction?

e Invariant to addition of some scalar to all input variables ie.
softmax(z) = softmax(z + c)
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Hidden units

e Active area of research and does not have good guiding theoretical prin-
ciple

e Usually rectified linear unit (ReLU) is chosen in most of the cases

e Design process consists of trial and error, then the suitable one is chosen
e Some of the activation functions are not differentiable (eg. ReLU)
o Still gradient descent performs well

e Neural network does not converge to local minima but reduces the value of cost
function to a very small value
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Generalization of RelLU

ReLU is defined as g(z) = max{0, z}

Using non-zero slope, h; = g(z, «); = max(0, z;) + «; min(0, z;)
e Absolute value rectification will make o; = —1and g(z) = ||

Leaky ReLU assumes very small values for o;

Parametric RelLU tries to learn o; parameters

Maxout unit g(z); = maxz;
jeGW
e Suitable for learning piecewise linear function
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Logistic sigmoid & hyperbolic tangent

e Logistic sigmoid g(z) = o(2)

e Hyperbolic tangent g(z) = tanh(z)
e tanh(z) = 20(2z) — 1

e Widespread saturation of sigmoidal unit is an issue for gradient based
learning
e Usually discouraged to use as hidden units

e Usually, hyperbolic tangent function performs better where sigmoidal
function must be used

e Behaves linearly at O

e Sigmoidal activation function are more common in settings other than feedfor-
ward network
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Other hidden units

e Differentiable functions are usually preferred
e Activation function h = cos(Wx + b) performs well for MNIST data set

e Sometimes no activation function helps in reducing the number of pa-
rameters

e Radial Basis Function - ¢(x, c) = ¢(||[x —c||)
e Gaussian - exp(—(er)?)

e Softplus - g(x) = ((x) = log(1+ exp(x))

e Hard tanh - g(x) = max(—1, min(1, x))

e Hidden unit design is an active area of research
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Architecture design

e Structure of neural network (chain based architecture)
e Number of layers
e Number of units in each layer
e Connectivity of those units

¢ Single hidden layer is sufficient to fit the training data
e Often deeper networks are preferred
e Fewer number of units

e Fewer number of parameters
o Difficult to optimize
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Back propagation

¢ In a feedforward network, an input x is read and produces an output y
e This is forward propagation

e During training forward propagation continues until it produces cost
J)(0)

e Back-propagation algorithm allows the information to flow backward in
the network to compute the gradient

e Computation of analytical expression for gradient is easy

e We need to find out gradient of the cost function with respect to the
parameters ie. VJ(0)
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Computational graph

®

relu

o




Chain rule of calculus

e Back-propagation algorithm heavily depends on it
e Let x be areal number and y = g(x) and z = f(g(x)) = f(y)

Chain rule says dz _ dzdy
. S —
y dx  dydx
e This can be generalized: Let x ¢ Rm, yeR" g 6 él)Rm — R"andf: R —
z Oy;
Randy = dz = f(y) then —
andy = g(x)and z = f(y en - Z By; o

e In vector notation it will be where % is the n x m Jacobian matrix of g

oy r
sz = (a) VyZ
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Application of chain rule

e Let us consider u") be the loss quantity. Need to find out the gradient
for this.

e Let u(Y to u(") are the inputs
e Therefore, we wish to compute %”T(()) wherei =1,2,...,n;

e Let us assume the nodes are ordered so that we can compute one
after another

e Each ul) is associated with an operation () ie. u() = f(A())
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Algorithm for forward pass

fori=1,... nido
ul < x;

end for

fori=n;+1,...,ndo
A0 < Ly0)j € Pa(u®)}
u® «— FO(AD)

end for

return u("
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Algorithm for backward pass

grad,table[u(”)] +—1

forj = n — 1down to 1do

. . (?U(i)
) M=
grad_table[uV] + E grad_tablelu ]Gu(f)

ijepa(u()

end for
return grad_table

IIT Patna

42




Computational graph & subexpression

e We have x = f(w),y = f(x), z = f(y) @
0z
a_w g
_ 0z0y Ox
Oy Oxow 4;
= f(y)f (x)f (w) f
= f(f(f(w)))f'(f(w))f (w) 4@




Forward propagation in MLP

e Input
e h(® =
e Computation for each layerk =1,... .1
e g — p) 1 WO Rpk-1)
o h® = f(a)
e Computation of output and loss function
e y=h
o = L(7,y) + AQ(0)
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Backward computation in MLP

e Compute gradient at the output
® g < V;,J = V;,L(f’, y)
e Convert the gradient at output layer into gradient of pre-activation
e g+ V,wl=80 f’(a(k))
e Compute gradient on weights and biases
o Vynwl=9+ )\Vb(k)Q(Q)
o Viwl = gh=T 1 AV 0 Q(0)
e Propagate the gradients wrt the next lower level activation
® g <— Vh(k—1).} = W(k)Tg
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Computation of derivatives

e Takes a computational graph and a set of numerical values for the in-
puts, then return a set of numerical values
e Symbol-to-number differentiation
e Torch, Caffe

e Takes computational graph and add additional nodes to the graph that
provide symbolic description of derivative
e Symbol-to-symbol derivative
e Theano, TensorFlow
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Back propagation
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Back propagation
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Back propagation
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Back propagation

f1°(x)

£2°(x)

f1

f2

1(x)+f2(x)
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Back propagation

f1°(x)+12’(x)

f1

f2
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Example
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