
IIT Patna 1

Introduc�on to Deep Learning

Arijit Mondal
Dept. of Computer Science & Engineering
Indian Ins�tute of Technology Patna
arijit@iitp.ac.in

IIT Patna 2

Deep Feedforward Networks

IIT Patna 3

Deep feedforward networks
• Also known as feedforward neural network or mul�layer perceptron

• Goal of such network is to approximate some func�on f∗
• For classifier, x is mapped to category y ie. y = f∗(x)
• A feedforward network maps y = f(x;θ) and learns θ for which the result is the
best func�on approxima�on

• Informa�on flows from input to intermediate to output
• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network
• Typically it represents composi�on of func�ons
• Three func�ons f(1), f(2), f(3) are connected in chain
• Overall func�on realized is f(x) = f(3)(f(2)(f(1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to model brain accurately!

IIT Patna 3

Deep feedforward networks
• Also known as feedforward neural network or mul�layer perceptron
• Goal of such network is to approximate some func�on f∗
• For classifier, x is mapped to category y ie. y = f∗(x)
• A feedforward network maps y = f(x;θ) and learns θ for which the result is the
best func�on approxima�on

• Informa�on flows from input to intermediate to output
• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network
• Typically it represents composi�on of func�ons
• Three func�ons f(1), f(2), f(3) are connected in chain
• Overall func�on realized is f(x) = f(3)(f(2)(f(1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to model brain accurately!

IIT Patna 3

Deep feedforward networks
• Also known as feedforward neural network or mul�layer perceptron
• Goal of such network is to approximate some func�on f∗
• For classifier, x is mapped to category y ie. y = f∗(x)
• A feedforward network maps y = f(x;θ) and learns θ for which the result is the
best func�on approxima�on

• Informa�on flows from input to intermediate to output
• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network

• Typically it represents composi�on of func�ons
• Three func�ons f(1), f(2), f(3) are connected in chain
• Overall func�on realized is f(x) = f(3)(f(2)(f(1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to model brain accurately!

IIT Patna 3

Deep feedforward networks
• Also known as feedforward neural network or mul�layer perceptron
• Goal of such network is to approximate some func�on f∗
• For classifier, x is mapped to category y ie. y = f∗(x)
• A feedforward network maps y = f(x;θ) and learns θ for which the result is the
best func�on approxima�on

• Informa�on flows from input to intermediate to output
• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network
• Typically it represents composi�on of func�ons
• Three func�ons f(1), f(2), f(3) are connected in chain
• Overall func�on realized is f(x) = f(3)(f(2)(f(1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to model brain accurately!

IIT Patna 3

Deep feedforward networks
• Also known as feedforward neural network or mul�layer perceptron
• Goal of such network is to approximate some func�on f∗
• For classifier, x is mapped to category y ie. y = f∗(x)
• A feedforward network maps y = f(x;θ) and learns θ for which the result is the
best func�on approxima�on

• Informa�on flows from input to intermediate to output
• No feedback, directed acyclic graph
• For general model, it can have feedback and known as recurrent neural network
• Typically it represents composi�on of func�ons
• Three func�ons f(1), f(2), f(3) are connected in chain
• Overall func�on realized is f(x) = f(3)(f(2)(f(1)(x)))
• The number of layers provides the depth of the model

• Goal of NN is not to model brain accurately!

x1 . . . xj . . . xk 1

h1(x) 1

W1 b1

h2(x) 1

W2 b2

f(x)

W3 b3

IIT Patna 4

Mul�layer neural network

IIT Patna 5

Issues with linear FFN
• Fit well for linear and logis�c regression
• Convex op�miza�on technique may be used
• Capacity of such func�on is limited
• Model cannot understand interac�on between any two variables

IIT Patna 6

Overcome issues of linear FFN
• Transform x (input) into φ(x) where φ is nonlinear transforma�on

• How to choose φ?
• Use a very generic φ of high dimension
• Enough capacity but may result in poor generaliza�on
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior informa�on
• Manually design φ
• Require domain knowledge
• Strategy of deep learning is to learn φ

IIT Patna 6

Overcome issues of linear FFN
• Transform x (input) into φ(x) where φ is nonlinear transforma�on
• How to choose φ?

• Use a very generic φ of high dimension
• Enough capacity but may result in poor generaliza�on
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior informa�on
• Manually design φ
• Require domain knowledge
• Strategy of deep learning is to learn φ

IIT Patna 6

Overcome issues of linear FFN
• Transform x (input) into φ(x) where φ is nonlinear transforma�on
• How to choose φ?
• Use a very generic φ of high dimension
• Enough capacity but may result in poor generaliza�on
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior informa�on

• Manually design φ
• Require domain knowledge
• Strategy of deep learning is to learn φ

IIT Patna 6

Overcome issues of linear FFN
• Transform x (input) into φ(x) where φ is nonlinear transforma�on
• How to choose φ?
• Use a very generic φ of high dimension
• Enough capacity but may result in poor generaliza�on
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior informa�on
• Manually design φ
• Require domain knowledge

• Strategy of deep learning is to learn φ

IIT Patna 6

Overcome issues of linear FFN
• Transform x (input) into φ(x) where φ is nonlinear transforma�on
• How to choose φ?
• Use a very generic φ of high dimension
• Enough capacity but may result in poor generaliza�on
• Very generic feature mapping usually based on principle of local smoothness
• Do not encode enough prior informa�on
• Manually design φ
• Require domain knowledge
• Strategy of deep learning is to learn φ

IIT Patna 7

Goal of deep learning
• We have a model y = f(x;θ,w) = φ(x;θ)Tw
• We use θ to learn φ
• w and φ determines the output. φ defines the hidden layer
• It looses the convexity of the training problem but benefits a lot
• Representa�on is parameterized as φ(x,θ)
• θ can be determined by solving op�miza�on problem
• Advantages
• φ can be very generic
• Human prac��oner can encode their knowledge to designing φ(x;θ)

IIT Patna 8

Design issues of feedforward network
• Choice of op�mizer
• Cost func�on
• The form of output unit
• Choice of ac�va�on func�on
• Design of architecture - number of layers, number of units in each layer
• Computa�on of gradients

IIT Patna 9

Example
• Let us choose XOR func�on
• Target func�on is y = f∗(x) and our model provides y = f(x;θ)

• Learning algorithm will choose the parameters θ to make f close to f∗

• Target is to fit output for X = {[0,0]T, [0, 1]T, [1,0]T, [1, 1]T}
• This can be treated as regression problem andMSE error can be chosen
as loss func�on (J(θ) =

1
4

∑
x∈X

(f∗(x)− f(x;θ))2)

• We need to choose f(x;θ) where θ depends on w and b
• Let us consider a linear model f(x;w, b) = xTw + b
• Solving these, we get w = 0 and b = 1

2

IIT Patna 9

Example
• Let us choose XOR func�on
• Target func�on is y = f∗(x) and our model provides y = f(x;θ)

• Learning algorithm will choose the parameters θ to make f close to f∗

• Target is to fit output for X = {[0,0]T, [0, 1]T, [1,0]T, [1, 1]T}
• This can be treated as regression problem andMSE error can be chosen
as loss func�on (J(θ) =

1
4

∑
x∈X

(f∗(x)− f(x;θ))2)

• We need to choose f(x;θ) where θ depends on w and b
• Let us consider a linear model f(x;w, b) = xTw + b

• Solving these, we get w = 0 and b = 1
2

IIT Patna 9

Example
• Let us choose XOR func�on
• Target func�on is y = f∗(x) and our model provides y = f(x;θ)

• Learning algorithm will choose the parameters θ to make f close to f∗

• Target is to fit output for X = {[0,0]T, [0, 1]T, [1,0]T, [1, 1]T}
• This can be treated as regression problem andMSE error can be chosen
as loss func�on (J(θ) =

1
4

∑
x∈X

(f∗(x)− f(x;θ))2)

• We need to choose f(x;θ) where θ depends on w and b
• Let us consider a linear model f(x;w, b) = xTw + b
• Solving these, we get w = 0 and b = 1

2

x1 x2

h1 h2

y

x

h

y

W

w

IIT Patna 10

Simple FFN with hidden layer
• Let us assume that the hidden unit h computes
f(1)(x;W, c)

• In the next layer y = f(2)(h;w, b) is computed
• Complete model f(x;W, c,w, b) = f(2)(f(1)(x))

• Suppose f(1)(x) = WTx and f2(h) = hTw then f(x) =
wTWTx

x1 x2

h1 h2

y

x

h

y

W

w

IIT Patna 10

Simple FFN with hidden layer
• Let us assume that the hidden unit h computes
f(1)(x;W, c)

• In the next layer y = f(2)(h;w, b) is computed

• Complete model f(x;W, c,w, b) = f(2)(f(1)(x))

• Suppose f(1)(x) = WTx and f2(h) = hTw then f(x) =
wTWTx

x1 x2

h1 h2

y

x

h

y

W

w

IIT Patna 10

Simple FFN with hidden layer
• Let us assume that the hidden unit h computes
f(1)(x;W, c)

• In the next layer y = f(2)(h;w, b) is computed
• Complete model f(x;W, c,w, b) = f(2)(f(1)(x))

• Suppose f(1)(x) = WTx and f2(h) = hTw then f(x) =
wTWTx

x1 x2

h1 h2

y

x

h

y

W

w

IIT Patna 10

Simple FFN with hidden layer
• Let us assume that the hidden unit h computes
f(1)(x;W, c)

• In the next layer y = f(2)(h;w, b) is computed
• Complete model f(x;W, c,w, b) = f(2)(f(1)(x))

• Suppose f(1)(x) = WTx and f2(h) = hTw

then f(x) =
wTWTx

x1 x2

h1 h2

y

x

h

y

W

w

IIT Patna 10

Simple FFN with hidden layer
• Let us assume that the hidden unit h computes
f(1)(x;W, c)

• In the next layer y = f(2)(h;w, b) is computed
• Complete model f(x;W, c,w, b) = f(2)(f(1)(x))

• Suppose f(1)(x) = WTx and f2(h) = hTw then f(x) =
wTWTx

x1 x2

h1 h2

y

x

h

y

W

w

IIT Patna 11

Simple FFN with hidden layer (contd.)
• We need to have nonlinear func�on to describe the
features
• Usually NN have affine transforma�on of learned
parameters followed by nonlinear ac�va�on func-
�on
• Let us use h = g(WTx + c)

• Let us use ReLU as ac�va�on func�on g(z) =
max{0, z}
• g is chosen element wise hi = g(xTW:,i + ci)

IIT Patna 12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b

• A solu�on for XOR problem can be as follows
• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =


0 0
1 0
0 1
1 1

, XW =


0 0
1 1
1 1
2 2

, add bias c


0 −1
1 0
1 0
2 1

, apply h


0 0
1 0
1 0
2 1

, mul�-

ply with w


0
1
1
0



IIT Patna 12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solu�on for XOR problem can be as follows
• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =


0 0
1 0
0 1
1 1

, XW =


0 0
1 1
1 1
2 2

, add bias c


0 −1
1 0
1 0
2 1

, apply h


0 0
1 0
1 0
2 1

, mul�-

ply with w


0
1
1
0



IIT Patna 12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solu�on for XOR problem can be as follows
• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X

=


0 0
1 0
0 1
1 1

, XW =


0 0
1 1
1 1
2 2

, add bias c


0 −1
1 0
1 0
2 1

, apply h


0 0
1 0
1 0
2 1

, mul�-

ply with w


0
1
1
0



IIT Patna 12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solu�on for XOR problem can be as follows
• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =


0 0
1 0
0 1
1 1

,

XW =


0 0
1 1
1 1
2 2

, add bias c


0 −1
1 0
1 0
2 1

, apply h


0 0
1 0
1 0
2 1

, mul�-

ply with w


0
1
1
0



IIT Patna 12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solu�on for XOR problem can be as follows
• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =


0 0
1 0
0 1
1 1

, XW

=


0 0
1 1
1 1
2 2

, add bias c


0 −1
1 0
1 0
2 1

, apply h


0 0
1 0
1 0
2 1

, mul�-

ply with w


0
1
1
0



IIT Patna 12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solu�on for XOR problem can be as follows
• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =


0 0
1 0
0 1
1 1

, XW =


0 0
1 1
1 1
2 2

,

add bias c


0 −1
1 0
1 0
2 1

, apply h


0 0
1 0
1 0
2 1

, mul�-

ply with w


0
1
1
0



IIT Patna 12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solu�on for XOR problem can be as follows
• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =


0 0
1 0
0 1
1 1

, XW =


0 0
1 1
1 1
2 2

, add bias c


0 −1
1 0
1 0
2 1

, apply h


0 0
1 0
1 0
2 1

, mul�-

ply with w


0
1
1
0



IIT Patna 12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solu�on for XOR problem can be as follows
• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =


0 0
1 0
0 1
1 1

, XW =


0 0
1 1
1 1
2 2

, add bias c


0 −1
1 0
1 0
2 1

,

apply h


0 0
1 0
1 0
2 1

, mul�-

ply with w


0
1
1
0



IIT Patna 12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solu�on for XOR problem can be as follows
• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =


0 0
1 0
0 1
1 1

, XW =


0 0
1 1
1 1
2 2

, add bias c


0 −1
1 0
1 0
2 1

, apply h


0 0
1 0
1 0
2 1

, mul�-

ply with w


0
1
1
0



IIT Patna 12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solu�on for XOR problem can be as follows
• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =


0 0
1 0
0 1
1 1

, XW =


0 0
1 1
1 1
2 2

, add bias c


0 −1
1 0
1 0
2 1

, apply h


0 0
1 0
1 0
2 1

,

mul�-

ply with w


0
1
1
0



IIT Patna 12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solu�on for XOR problem can be as follows
• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =


0 0
1 0
0 1
1 1

, XW =


0 0
1 1
1 1
2 2

, add bias c


0 −1
1 0
1 0
2 1

, apply h


0 0
1 0
1 0
2 1

, mul�-

ply with w


0
1
1
0



IIT Patna 12

Simple FFN with hidden layer (contd.)
• Complete network is f(x;W, c,w, b) = wT max{0,WTx + c}+ b
• A solu�on for XOR problem can be as follows
• W =

[
1 1
1 1

]
, c =

[
0
−1

]
, w =

[
1
−2

]
, b = 0

• Now we have

• X =


0 0
1 0
0 1
1 1

, XW =


0 0
1 1
1 1
2 2

, add bias c


0 −1
1 0
1 0
2 1

, apply h


0 0
1 0
1 0
2 1

, mul�-

ply with w


0
1
1
0



IIT Patna 13

Gradient based learning
• Similar to machine learning tasks, gradient descent based learning is
used
• Need to specify op�miza�on procedure, cost func�on and model family
• For NN, model is nonlinear and func�on becomes nonconvex
• Usually trained by itera�ve, gradient based op�mizer

• Solved by using gradient descent or stochas�c gradient descent (SGD)

IIT Patna 14

Gradient descent
• For a func�on y = f(x), deriva�ve (slope at point x) of it is f′(x) = dy

dx

• A small change in the input can cause output to move to a value given
by f(x + ε) ≈ f(x) + εf′(x)

• Weneed to take a jump so that y reduces (assumingminimiza�on prob-
lem)
• We can say that f(x− εsign(f′(x))) is less than f(x)

• For mul�ple inputs par�al deriva�ves are used ie. ∂
∂xi
f(x)

• Gradient vector is represented as∇xf(x)

• Gradient descent proposes a new point as x′ = x − ε∇xf(x) where ε is
the learning rate

IIT Patna 15

Stochas�c gradient descent
• Large training set are necessary for good generaliza�on
• Cost func�on used for op�miza�on is J(θ) = 1

m
∑m

i=1 L(x(i), y(i),θ)

• Gradient descent requires∇θJ(θ) = 1
m
∑m

i=1∇θL(x(i), y(i),θ)

• Computa�on cost is O(m)

• For SGD, gradient is an expecta�on es�mated from a small sample
known as minibatch (B = {x(1), . . . , x(m′)})

• Es�mated gradient is g =
1
m′

m′∑
i=1

∇θL(x(i), y(i),θ)

• New point will be θ = θ − εg

IIT Patna 15

Stochas�c gradient descent
• Large training set are necessary for good generaliza�on
• Cost func�on used for op�miza�on is J(θ) = 1

m
∑m

i=1 L(x(i), y(i),θ)

• Gradient descent requires∇θJ(θ) = 1
m
∑m

i=1∇θL(x(i), y(i),θ)
• Computa�on cost is O(m)

• For SGD, gradient is an expecta�on es�mated from a small sample
known as minibatch (B = {x(1), . . . , x(m′)})

• Es�mated gradient is g =
1
m′

m′∑
i=1

∇θL(x(i), y(i),θ)

• New point will be θ = θ − εg

IIT Patna 15

Stochas�c gradient descent
• Large training set are necessary for good generaliza�on
• Cost func�on used for op�miza�on is J(θ) = 1

m
∑m

i=1 L(x(i), y(i),θ)

• Gradient descent requires∇θJ(θ) = 1
m
∑m

i=1∇θL(x(i), y(i),θ)
• Computa�on cost is O(m)

• For SGD, gradient is an expecta�on es�mated from a small sample
known as minibatch (B = {x(1), . . . , x(m′)})

• Es�mated gradient is g =
1
m′

m′∑
i=1

∇θL(x(i), y(i),θ)

• New point will be θ = θ − εg

IIT Patna 16

Cost func�on
• Similar to other parametric model like linear models
• Parametric model defines distribu�on p(y|x;θ)

• Principle ofmaximum likelihood is used (cross entropy between train-
ing data and model predic�on)
• Instead of predic�ng the whole distribu�on of y, some sta�s�c of y
condi�oned on x is predicted
• It can also contain regulariza�on term

IIT Patna 17

Maximum likelihood es�ma�on
• Consider a set ofm examplesX = {x(1), . . . , x(m)} drawn independently
from the true but unknown data genera�ng distribu�on pdata(x)

• Let pmodel(x;θ) be a parametric family of probability distribu�on

• Maximum likelihood es�mator for θ is defined as

θML = argmax
θ

pmodel(X;θ) = argmax
θ

m∏
i=1

pmodel(x(i);θ)

• It can be wri�en as θML = argmax
θ

m∑
i=1

log pmodel(x(i);θ)

• By dividingm we get θML = argmax
θ

EX∼pdata log pmodel(x;θ)

IIT Patna 17

Maximum likelihood es�ma�on
• Consider a set ofm examplesX = {x(1), . . . , x(m)} drawn independently
from the true but unknown data genera�ng distribu�on pdata(x)

• Let pmodel(x;θ) be a parametric family of probability distribu�on
• Maximum likelihood es�mator for θ is defined as

θML = argmax
θ

pmodel(X;θ) = argmax
θ

m∏
i=1

pmodel(x(i);θ)

• It can be wri�en as θML = argmax
θ

m∑
i=1

log pmodel(x(i);θ)

• By dividingm we get θML = argmax
θ

EX∼pdata log pmodel(x;θ)

IIT Patna 17

Maximum likelihood es�ma�on
• Consider a set ofm examplesX = {x(1), . . . , x(m)} drawn independently
from the true but unknown data genera�ng distribu�on pdata(x)

• Let pmodel(x;θ) be a parametric family of probability distribu�on
• Maximum likelihood es�mator for θ is defined as

θML = argmax
θ

pmodel(X;θ) = argmax
θ

m∏
i=1

pmodel(x(i);θ)

• It can be wri�en as θML = argmax
θ

m∑
i=1

log pmodel(x(i);θ)

• By dividingm we get θML = argmax
θ

EX∼pdata log pmodel(x;θ)

IIT Patna 17

Maximum likelihood es�ma�on
• Consider a set ofm examplesX = {x(1), . . . , x(m)} drawn independently
from the true but unknown data genera�ng distribu�on pdata(x)

• Let pmodel(x;θ) be a parametric family of probability distribu�on
• Maximum likelihood es�mator for θ is defined as

θML = argmax
θ

pmodel(X;θ) = argmax
θ

m∏
i=1

pmodel(x(i);θ)

• It can be wri�en as θML = argmax
θ

m∑
i=1

log pmodel(x(i);θ)

• By dividingm we get θML = argmax
θ

EX∼pdata log pmodel(x;θ)

IIT Patna 18

Maximum likelihood es�ma�on (cont.)
• Minimizing dissimilarity between the empirical p̂data and model distri-
bu�on pmodel and it is measured by KL divergence
DKL(p̂data‖pmodel) = argmin

θ
EX∼p̂data [log p̂data(x)− log pmodel(x;θ)]

• We need to minimize− argmin
θ

EX∼p̂data log pmodel(x;θ)

IIT Patna 18

Maximum likelihood es�ma�on (cont.)
• Minimizing dissimilarity between the empirical p̂data and model distri-
bu�on pmodel and it is measured by KL divergence
DKL(p̂data‖pmodel) = argmin

θ
EX∼p̂data [log p̂data(x)− log pmodel(x;θ)]

• We need to minimize− argmin
θ

EX∼p̂data log pmodel(x;θ)

IIT Patna 19

Condi�onal log-likelihood
• In most of the supervised learning we es�mate P(y|x;θ)

• If X be the all inputs and Y be observed targets then condi�onal max-
imum likelihood es�mator is θML = argmax

θ
P(Y|X;θ)

• If the examples are assumed to be i.i.d then we can say

θML = argmax
θ

m∑
i=1

log P(y(i)|x(i);θ)

IIT Patna 20

Linear regression as maximum likelihood
• Instead of producing single predic�on ŷ for a given x, we assume the
model produces condi�onal distribu�on p(y|x)

• For infinitely large training set, we can observe mul�ple examples hav-
ing the same x but different values of y
• Goal is to fit the distribu�on p(y|x)

• Let us assume, p(y|x) = N (y; ŷ(x;w), σ2)

• Since the examples are assumed to be i.i.d, condi�onal log-likelihood is
given by

m∑
i=1

log p(y(i)|x(i);θ) = −m logσ − m
2
log(2π)−

m∑
i=1

‖ŷ(i) − y(i)‖2

2σ2

IIT Patna 20

Linear regression as maximum likelihood
• Instead of producing single predic�on ŷ for a given x, we assume the
model produces condi�onal distribu�on p(y|x)

• For infinitely large training set, we can observe mul�ple examples hav-
ing the same x but different values of y
• Goal is to fit the distribu�on p(y|x)

• Let us assume, p(y|x) = N (y; ŷ(x;w), σ2)

• Since the examples are assumed to be i.i.d, condi�onal log-likelihood is
given by

m∑
i=1

log p(y(i)|x(i);θ) = −m logσ − m
2
log(2π)−

m∑
i=1

‖ŷ(i) − y(i)‖2

2σ2

IIT Patna 20

Linear regression as maximum likelihood
• Instead of producing single predic�on ŷ for a given x, we assume the
model produces condi�onal distribu�on p(y|x)

• For infinitely large training set, we can observe mul�ple examples hav-
ing the same x but different values of y
• Goal is to fit the distribu�on p(y|x)

• Let us assume, p(y|x) = N (y; ŷ(x;w), σ2)

• Since the examples are assumed to be i.i.d, condi�onal log-likelihood is
given by

m∑
i=1

log p(y(i)|x(i);θ)

= −m logσ − m
2
log(2π)−

m∑
i=1

‖ŷ(i) − y(i)‖2

2σ2

IIT Patna 20

Linear regression as maximum likelihood
• Instead of producing single predic�on ŷ for a given x, we assume the
model produces condi�onal distribu�on p(y|x)

• For infinitely large training set, we can observe mul�ple examples hav-
ing the same x but different values of y
• Goal is to fit the distribu�on p(y|x)

• Let us assume, p(y|x) = N (y; ŷ(x;w), σ2)

• Since the examples are assumed to be i.i.d, condi�onal log-likelihood is
given by

m∑
i=1

log p(y(i)|x(i);θ) = −m logσ − m
2
log(2π)−

m∑
i=1

‖ŷ(i) − y(i)‖2

2σ2

IIT Patna 21

Learning condi�onal distribu�ons
• Usually neural networks are trained using maximum likelihood. There-
fore the cost func�on is nega�ve log-likelihood. Also known as cross
entropy between training data and model distribu�on
• Cost func�on J(θ) = −EX,Y∼p̂data log pmodel(y|x,θ)

• Uniform across different models
• Gradient of cost func�on is very much crucial
• Large and predictable gradient can serve good guide for learning process
• Func�on that saturates will have small gradient
• Ac�va�on func�on usually produces values in a bounded zone (saturates)
• Nega�ve log-likelihood can overcome some of the problems
• Output unit having exp func�on can saturate for high nega�ve value
• Log-likelihood cost func�on undoes the exp of some output func�ons

IIT Patna 22

Learning condi�onal sta�s�cs
• Instead of learning the whole distribu�on p(y|x;θ), we want to learn
one condi�onal sta�s�cs of y given x
• For a predic�ng func�on f(x;θ), we would like to predict the mean of y

• Neural network can represent any func�on f from a very wide range of
func�ons
• Range of func�on is limited by features like con�nuity, boundedness,
etc.
• Cost func�on becomes func�onal rather than a func�on

IIT Patna 22

Learning condi�onal sta�s�cs
• Instead of learning the whole distribu�on p(y|x;θ), we want to learn
one condi�onal sta�s�cs of y given x
• For a predic�ng func�on f(x;θ), we would like to predict the mean of y

• Neural network can represent any func�on f from a very wide range of
func�ons
• Range of func�on is limited by features like con�nuity, boundedness,
etc.

• Cost func�on becomes func�onal rather than a func�on

IIT Patna 22

Learning condi�onal sta�s�cs
• Instead of learning the whole distribu�on p(y|x;θ), we want to learn
one condi�onal sta�s�cs of y given x
• For a predic�ng func�on f(x;θ), we would like to predict the mean of y

• Neural network can represent any func�on f from a very wide range of
func�ons
• Range of func�on is limited by features like con�nuity, boundedness,
etc.
• Cost func�on becomes func�onal rather than a func�on

IIT Patna 23

Learning condi�onal sta�s�cs
• Need to solve the op�miza�on problem
f∗ = argmin

f
EX,Y∼pdata‖y − f(x)‖2

• Using calculus of varia�on, it gives f∗(x) = EY∼pdata(y|x)[y]
• Mean of y for each value of x
• Using a different cost func�on f∗ = argmin

f
EX,Y∼pdata‖y − f(x)‖1

• Median of y for each value of x

IIT Patna 23

Learning condi�onal sta�s�cs
• Need to solve the op�miza�on problem
f∗ = argmin

f
EX,Y∼pdata‖y − f(x)‖2

• Using calculus of varia�on, it gives f∗(x) = EY∼pdata(y|x)[y]
• Mean of y for each value of x

• Using a different cost func�on f∗ = argmin
f

EX,Y∼pdata‖y − f(x)‖1
• Median of y for each value of x

IIT Patna 23

Learning condi�onal sta�s�cs
• Need to solve the op�miza�on problem
f∗ = argmin

f
EX,Y∼pdata‖y − f(x)‖2

• Using calculus of varia�on, it gives f∗(x) = EY∼pdata(y|x)[y]
• Mean of y for each value of x
• Using a different cost func�on f∗ = argmin

f
EX,Y∼pdata‖y − f(x)‖1

• Median of y for each value of x

IIT Patna 23

Learning condi�onal sta�s�cs
• Need to solve the op�miza�on problem
f∗ = argmin

f
EX,Y∼pdata‖y − f(x)‖2

• Using calculus of varia�on, it gives f∗(x) = EY∼pdata(y|x)[y]
• Mean of y for each value of x
• Using a different cost func�on f∗ = argmin

f
EX,Y∼pdata‖y − f(x)‖1

• Median of y for each value of x

IIT Patna 24

Calculus of varia�on
• Let us consider func�onal J[y] =

∫ x2

x1
L(x, y(x), y′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]
• η is an arbitrary func�on of x such that η(x1) = η(x2) = 0 and differen�able

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ

dε

∣∣∣∣
ε=0

=∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say,
dL
dε

=
∂L
∂y

dy
dε

+
∂L
∂y′

dy′

dε
• As we have y = f + εη and y′ = f′+ εη′, therefore,

dL
dε

=
∂L
∂y
η +

∂L
∂y′

η′

IIT Patna 24

Calculus of varia�on
• Let us consider func�onal J[y] =

∫ x2

x1
L(x, y(x), y′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]
• η is an arbitrary func�on of x such that η(x1) = η(x2) = 0 and differen�able

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ

dε

∣∣∣∣
ε=0

=∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say,
dL
dε

=
∂L
∂y

dy
dε

+
∂L
∂y′

dy′

dε
• As we have y = f + εη and y′ = f′+ εη′, therefore,

dL
dε

=
∂L
∂y
η +

∂L
∂y′

η′

IIT Patna 24

Calculus of varia�on
• Let us consider func�onal J[y] =

∫ x2

x1
L(x, y(x), y′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]
• η is an arbitrary func�on of x such that η(x1) = η(x2) = 0 and differen�able

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ

dε

∣∣∣∣
ε=0

=∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx

= 0

• Now we can say,
dL
dε

=
∂L
∂y

dy
dε

+
∂L
∂y′

dy′

dε
• As we have y = f + εη and y′ = f′+ εη′, therefore,

dL
dε

=
∂L
∂y
η +

∂L
∂y′

η′

IIT Patna 24

Calculus of varia�on
• Let us consider func�onal J[y] =

∫ x2

x1
L(x, y(x), y′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]
• η is an arbitrary func�on of x such that η(x1) = η(x2) = 0 and differen�able

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ

dε

∣∣∣∣
ε=0

=∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say,
dL
dε

=
∂L
∂y

dy
dε

+
∂L
∂y′

dy′

dε
• As we have y = f + εη and y′ = f′+ εη′, therefore,

dL
dε

=
∂L
∂y
η +

∂L
∂y′

η′

IIT Patna 24

Calculus of varia�on
• Let us consider func�onal J[y] =

∫ x2

x1
L(x, y(x), y′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]
• η is an arbitrary func�on of x such that η(x1) = η(x2) = 0 and differen�able

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ

dε

∣∣∣∣
ε=0

=∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say,
dL
dε

=
∂L
∂y

dy
dε

+
∂L
∂y′

dy′

dε

• As we have y = f + εη and y′ = f′+ εη′, therefore,
dL
dε

=
∂L
∂y
η +

∂L
∂y′

η′

IIT Patna 24

Calculus of varia�on
• Let us consider func�onal J[y] =

∫ x2

x1
L(x, y(x), y′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]
• η is an arbitrary func�on of x such that η(x1) = η(x2) = 0 and differen�able

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ

dε

∣∣∣∣
ε=0

=∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say,
dL
dε

=
∂L
∂y

dy
dε

+
∂L
∂y′

dy′

dε
• As we have y = f + εη and y′ = f′+ εη′, therefore,

dL
dε

=
∂L
∂y
η +

∂L
∂y′

η′

IIT Patna 24

Calculus of varia�on
• Let us consider func�onal J[y] =

∫ x2

x1
L(x, y(x), y′(x)) dx

• Let J[y] has local minima at f. Therefore, we can say J[f] ≤ J[f + εη]
• η is an arbitrary func�on of x such that η(x1) = η(x2) = 0 and differen�able

• Let us assume Φ(ε) = J[f + εη]. Therefore, Φ′(0) ≡ dΦ

dε

∣∣∣∣
ε=0

=∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx = 0

• Now we can say,
dL
dε

=
∂L
∂y

dy
dε

+
∂L
∂y′

dy′

dε
• As we have y = f + εη and y′ = f′+ εη′, therefore,

dL
dε

=
∂L
∂y
η +

∂L
∂y′

η′

IIT Patna 25

Calculus of varia�on (contd.)
• Now we have∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f
η +

∂L
∂f′
η′
)

dx

=

∫ x2

x1

(
∂L
∂f
η − η d

dx
∂L
∂f′

)
dx +

∂L
∂f′
η

∣∣∣∣x2
x1

• Hence
∫ x2

x1
η

(
∂L
∂f
− d

dx
∂L
∂f′

)
dx = 0

• Euler-Lagrange equa�on ∂L
∂f
− d

dx
∂L
∂f′

= 0

IIT Patna 25

Calculus of varia�on (contd.)
• Now we have∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f
η +

∂L
∂f′
η′
)

dx

=

∫ x2

x1

(
∂L
∂f
η − η d

dx
∂L
∂f′

)
dx +

∂L
∂f′
η

∣∣∣∣x2
x1

• Hence
∫ x2

x1
η

(
∂L
∂f
− d

dx
∂L
∂f′

)
dx = 0

• Euler-Lagrange equa�on ∂L
∂f
− d

dx
∂L
∂f′

= 0

IIT Patna 25

Calculus of varia�on (contd.)
• Now we have∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f
η +

∂L
∂f′
η′
)

dx

=

∫ x2

x1

(
∂L
∂f
η − η d

dx
∂L
∂f′

)
dx +

∂L
∂f′
η

∣∣∣∣x2
x1

• Hence
∫ x2

x1
η

(
∂L
∂f
− d

dx
∂L
∂f′

)
dx = 0

• Euler-Lagrange equa�on ∂L
∂f
− d

dx
∂L
∂f′

= 0

IIT Patna 25

Calculus of varia�on (contd.)
• Now we have∫ x2

x1

dL
dε

∣∣∣∣
ε=0

dx =

∫ x2

x1

(
∂L
∂f
η +

∂L
∂f′
η′
)

dx

=

∫ x2

x1

(
∂L
∂f
η − η d

dx
∂L
∂f′

)
dx +

∂L
∂f′
η

∣∣∣∣x2
x1

• Hence
∫ x2

x1
η

(
∂L
∂f
− d

dx
∂L
∂f′

)
dx = 0

• Euler-Lagrange equa�on ∂L
∂f
− d

dx
∂L
∂f′

= 0

IIT Patna 26

Example
• Let us consider distance between two points A[y] =∫ x2

x1

√
1 + [y′(x)]2 dx

• y ′(x) =
dy
dx
, y1 = f(x1) , y2 = f(x2)

• We have,
∂L
∂f
− d

dx
∂L
∂f′

= 0 where L =
√
1 + [f′(x)]2

• As f does not appear explicitly in L, hence
d
dx
∂L
∂f′

= 0

• Now we have,
d
dx

f′(x)√
1 + [f′(x)]2

= 0

IIT Patna 26

Example
• Let us consider distance between two points A[y] =∫ x2

x1

√
1 + [y′(x)]2 dx

• y ′(x) =
dy
dx
, y1 = f(x1) , y2 = f(x2)

• We have,
∂L
∂f
− d

dx
∂L
∂f′

= 0 where L =
√
1 + [f′(x)]2

• As f does not appear explicitly in L, hence
d
dx
∂L
∂f′

= 0

• Now we have,
d
dx

f′(x)√
1 + [f′(x)]2

= 0

IIT Patna 26

Example
• Let us consider distance between two points A[y] =∫ x2

x1

√
1 + [y′(x)]2 dx

• y ′(x) =
dy
dx
, y1 = f(x1) , y2 = f(x2)

• We have,
∂L
∂f
− d

dx
∂L
∂f′

= 0 where L =
√
1 + [f′(x)]2

• As f does not appear explicitly in L, hence
d
dx
∂L
∂f′

= 0

• Now we have,
d
dx

f′(x)√
1 + [f′(x)]2

= 0

IIT Patna 26

Example
• Let us consider distance between two points A[y] =∫ x2

x1

√
1 + [y′(x)]2 dx

• y ′(x) =
dy
dx
, y1 = f(x1) , y2 = f(x2)

• We have,
∂L
∂f
− d

dx
∂L
∂f′

= 0 where L =
√
1 + [f′(x)]2

• As f does not appear explicitly in L, hence
d
dx
∂L
∂f′

= 0

• Now we have,
d
dx

f′(x)√
1 + [f′(x)]2

= 0

IIT Patna 27

Example
• Taking deriva�ve we get d

2f
dx2
· 1[√

1 + [f′(x)]2
]3 = 0

• Therefore we have, d
2f

dx2
= 0

• Hence we have f(x) = mx + b with m =
y2 − y1
x2 − x1

and b =
x2y1 − x1y2
x2 − x1

IIT Patna 27

Example
• Taking deriva�ve we get d

2f
dx2
· 1[√

1 + [f′(x)]2
]3 = 0

• Therefore we have, d
2f

dx2
= 0

• Hence we have f(x) = mx + b with m =
y2 − y1
x2 − x1

and b =
x2y1 − x1y2
x2 − x1

IIT Patna 27

Example
• Taking deriva�ve we get d

2f
dx2
· 1[√

1 + [f′(x)]2
]3 = 0

• Therefore we have, d
2f

dx2
= 0

• Hence we have f(x) = mx + b with m =
y2 − y1
x2 − x1

and b =
x2y1 − x1y2
x2 − x1

IIT Patna 28

Output units
• Choice of cost func�on is directly related with the choice of output
func�on
• In most cases cost func�on is determined by cross entropy between
data and model distribu�on
• Any kind of output unit can be used as hidden unit

IIT Patna 29

Linear units
• Suited for Gaussian output distribu�on
• Given features h, linear output unit produces ŷ = WTh + b
• This can be treated as condi�onal probability p(y|x) = N (y; ŷ, I)
• Maximizing log-likelihood is equivalent tominimizingmean square er-
ror

IIT Patna 30

Sigmoid unit
• Mostly suited for binary classifica�on problem that is Bernoulli output
distribu�on
• The neural networks need to predict p(y = 1|x)
• If linear unit has been chosen, p(y = 1|x) = max

{
0,min{1,WTh + b}

}
• Gradient?

• Model should have strong gradient whenever the answer is wrong
• Let us assume unnormalized log probability is linear with z = WTh + b
• Therefore, log P̃(y) = yz⇒ P̃(y) = exp(yz)⇒ P(y) = exp(yz)∑

y′∈{0,1} exp(y′z)

• It can be wri�en as P(y) = σ((2y − 1)z)

• The loss func�on for maximum likelihood is
J(θ) = − log P(y|x) = − logσ((2y − 1)z) = ζ((1− 2y)z)

IIT Patna 31

So�max unit
• Similar to sigmoid. Mostly suited for mul�noulli distribu�on
• We need to predict a vector ŷ such that ŷi = P(Y = i|x)

• A linear layer predicts unnormalized probabili�es z = WTh + b that is
zi = log P̃(y = i|x)

• Formally, so�max(z)i =
exp zi∑
j exp(zj)

• Log in log-likelihood can undo exp log so�max(z)i = zi− log
∑
j

exp(zj)
• Does it saturate?
• What about incorrect predic�on?

• Invariant to addi�on of some scalar to all input variables ie.
so�max(z) = so�max(z + c)

IIT Patna 32

Hidden units
• Ac�ve area of research and does not have good guiding theore�cal prin-
ciple
• Usually rec�fied linear unit (ReLU) is chosen in most of the cases
• Design process consists of trial and error, then the suitable one is chosen
• Some of the ac�va�on func�ons are not differen�able (eg. ReLU)
• S�ll gradient descent performs well
• Neural network does not converge to local minima but reduces the value of cost
func�on to a very small value

IIT Patna 33

Generaliza�on of ReLU
• ReLU is defined as g(z) = max{0, z}
• Using non-zero slope, hi = g(z,α)i = max(0, zi) + αimin(0, zi)
• Absolute value rec�fica�on will make αi = −1 and g(z) = |z|

• Leaky ReLU assumes very small values for αi

• Parametric ReLU tries to learn αi parameters
• Maxout unit g(z)i = max

j∈G(i)
zj

• Suitable for learning piecewise linear func�on

IIT Patna 34

Logis�c sigmoid & hyperbolic tangent
• Logis�c sigmoid g(z) = σ(z)
• Hyperbolic tangent g(z) = tanh(z)
• tanh(z) = 2σ(2z)− 1
• Widespread satura�on of sigmoidal unit is an issue for gradient based
learning
• Usually discouraged to use as hidden units
• Usually, hyperbolic tangent func�on performs be�erwhere sigmoidal
func�on must be used
• Behaves linearly at 0
• Sigmoidal ac�va�on func�on are more common in se�ngs other than feedfor-
ward network

IIT Patna 35

Other hidden units
• Differen�able func�ons are usually preferred
• Ac�va�on func�on h = cos(Wx + b) performs well for MNIST data set
• Some�mes no ac�va�on func�on helps in reducing the number of pa-
rameters
• Radial Basis Func�on - φ(x, c) = φ(‖x − c‖)
• Gaussian - exp(−(εr)2)

• So�plus - g(x) = ζ(x) = log(1 + exp(x))

• Hard tanh - g(x) = max(−1,min(1, x))

• Hidden unit design is an ac�ve area of research

IIT Patna 36

Architecture design
• Structure of neural network (chain based architecture)
• Number of layers
• Number of units in each layer
• Connec�vity of those units

• Single hidden layer is sufficient to fit the training data
• O�en deeper networks are preferred
• Fewer number of units
• Fewer number of parameters
• Difficult to op�mize

IIT Patna 37

Back propaga�on
• In a feedforward network, an input x is read and produces an output ŷ
• This is forward propaga�on

• During training forward propaga�on con�nues un�l it produces cost
J(θ)

• Back-propaga�on algorithm allows the informa�on to flow backward in
the network to compute the gradient
• Computa�on of analy�cal expression for gradient is easy
• We need to find out gradient of the cost func�on with respect to the
parameters ie. ∇θJ(θ)

X W b

U(1) U(2)

H

matmul

+

relu

IIT Patna 38

Computa�onal graph

IIT Patna 39

Chain rule of calculus
• Back-propaga�on algorithm heavily depends on it
• Let x be a real number and y = g(x) and z = f(g(x)) = f(y)

• Chain rule says
dz
dx

=
dz
dy

dy
dx

• This can be generalized: Let x ∈ Rm, y ∈ Rn, g : Rm → Rn and f : R→
R and y = g(x) and z = f(y) then

∂z
∂xi

=
∑
j

∂z
∂yj

∂yj
∂xi

• In vector nota�on it will be where ∂y
∂x is the n×m Jacobian matrix of g

∇xz =

(
∂y
∂x

)T

∇yz

IIT Patna 40

Applica�on of chain rule
• Let us consider u(n) be the loss quan�ty. Need to find out the gradient
for this.
• Let u(1) to u(ni) are the inputs
• Therefore, we wish to compute ∂u(n)

∂u(i) where i = 1, 2, . . . , ni
• Let us assume the nodes are ordered so that we can compute one
a�er another
• Each u(i) is associated with an opera�on f(i) ie. u(i) = f(A(i))

IIT Patna 41

Algorithm for forward pass
for i = 1, . . . , ni do
u(i) ← xi

end for
for i = ni + 1, . . . , n do
A(i) ← {u(j)|j ∈ Pa(u(i))}
u(i) ← f(i)(A(i))

end for
return u(n)

IIT Patna 42

Algorithm for backward pass
grad table[u(n)]← 1
for j = n− 1 down to 1 do

grad table[u(j)]←
∑

i:j∈Pa(u(i))

grad table[u(i)]
∂u(i)

∂u(j)

end for
return grad table

w

x

y

z

f

f

f

IIT Patna 43

Computa�onal graph & subexpression
• We have x = f(w), y = f(x), z = f(y)

∂z
∂w

=
∂z
∂y
∂y
∂x

∂x
∂w

= f′(y)f′(x)f′(w)

= f′(f(f(w)))f′(f(w))f′(w)

IIT Patna 44

Forward propaga�on in MLP
• Input
• h(0) = x
• Computa�on for each layer k = 1, . . . , l
• a(k) = b(k) + W(k)h(k−1)
• h(k) = f(a(k))
• Computa�on of output and loss func�on
• ŷ = h(l)
• J = L(ŷ, y) + λΩ(θ)

IIT Patna 45

Backward computa�on in MLP
• Compute gradient at the output
• g← ∇ŷJ = ∇ŷL(ŷ, y)

• Convert the gradient at output layer into gradient of pre-ac�va�on
• g← ∇a(k)J = g� f′(a(k))
• Compute gradient on weights and biases
• ∇b(k)J = g + λ∇b(k)Ω(θ)
• ∇W(k)J = gh(k−1)T + λ∇W(k)Ω(θ)

• Propagate the gradients wrt the next lower level ac�va�on
• g← ∇h(k−1)J = W(k)Tg

IIT Patna 46

Computa�on of deriva�ves
• Takes a computa�onal graph and a set of numerical values for the in-
puts, then return a set of numerical values
• Symbol-to-number differen�a�on
• Torch, Caffe
• Takes computa�onal graph and add addi�onal nodes to the graph that
provide symbolic descrip�on of deriva�ve
• Symbol-to-symbol deriva�ve
• Theano, TensorFlow

w

x

y

z

f

f

f

w

x

y

z

f

f

f

dx
dw

dy
dx

dz
dy

dz
dw

dz
dx

f′

f′

f′

×

×

IIT Patna 47

Example

IIT Patna 48

Back propaga�on

f’ f

s’ s1 +

IIT Patna 49

Back propaga�on

f’ fg’ gx

IIT Patna 50

Back propaga�on

f’ fg’ gx

g’(x) g f’(g(x)) fx

IIT Patna 51

Back propaga�on

1

1
+

f1’(x)

f2’(x)

f1

f2

x f1(x)+f2(x)

IIT Patna 52

Back propaga�on

1

1
+

f1’(x)

f2’(x)

f1

f2

1

f1’(x)+f2’(x)

x1

x2

h1

h2

o1

o2

1 1

w1

w2

w3

w4

b1

b2

w5

w6

w7

w8

b3

b4

IIT Patna 53

Example

x1

.05

x2

.10

h1

h2

o1

.01

o2

.99

1 1

w1 : .15

w2 : .20

w3 : .25

w4 : .30

b1 : .35

b2 : .35

w5 : .40

w6 : .45

w7 : .50

w8 : .55

b3 : .60

b4 : .60

IIT Patna 54

Example

