
IIT Patna 1

Expressions

Arijit Mondal
Dept. of Computer Science & Engineering

Indian Institute of Technology Patna

arijit@iitp.ac.in

IIT Patna 2

Expressions

• Variables and constants are linked with operators

• Arithmetic expressions

• Uses arithmetic operators
• Can evaluate to any value

• Logical expressions

• Uses relational and logical operators
• Evaluates to 1 or 0 (true or false) only

• Assignment expression

• Uses assignment operators
• Evaluates to value depending on assignment

IIT Patna 3

Arithmetic operators

• Binary operators

• Addition +
• Subtraction −
• Division /
• Multiplication ∗
• Modulus %

• Unary operators

• Plus +
• Minus +

• Examples:

2*3+5-10/3

-1+3*3/19-7

distance/time

a*x*x+b*x+c

37%10

3.14*radius*radius

IIT Patna 4

Example

• Suppose x and y are two integer variables whose values are 13 and 5 respectively

• x+y : 18

• x-y : 8

• x*y : 65

• x/y :

2

• x%y : 3

• Note

• All operators except % can be used with operands of all of the data types int, float,
double, char (yes! char also! We will see what it means later)

• % can be used only with integer operands

IIT Patna 4

Example

• Suppose x and y are two integer variables whose values are 13 and 5 respectively

• x+y : 18

• x-y : 8

• x*y : 65

• x/y : 2

• x%y : 3

• Note

• All operators except % can be used with operands of all of the data types int, float,
double, char (yes! char also! We will see what it means later)

• % can be used only with integer operands

IIT Patna 4

Example

• Suppose x and y are two integer variables whose values are 13 and 5 respectively

• x+y : 18

• x-y : 8

• x*y : 65

• x/y : 2

• x%y :

3

• Note

• All operators except % can be used with operands of all of the data types int, float,
double, char (yes! char also! We will see what it means later)

• % can be used only with integer operands

IIT Patna 4

Example

• Suppose x and y are two integer variables whose values are 13 and 5 respectively

• x+y : 18

• x-y : 8

• x*y : 65

• x/y : 2

• x%y : 3

• Note

• All operators except % can be used with operands of all of the data types int, float,
double, char (yes! char also! We will see what it means later)

• % can be used only with integer operands

IIT Patna 5

Operator precedence

• In decreasing order of priority

1. Parenthesis
2. Unary minus (-5)
3. Multiplication, division and modulus (x*y : 65)
4. Addition and subtraction

• For operators of the same priority, evaluation is from left to right

• Parenthesis may be used to change the precedence of operator evaluation

IIT Patna 6

Examples of arithmetic expressions

a+b*c-d/e

→ a+(b*c)-(d/e)

a*-b+d%e-f → a*(-b)+(d%e)-f

a-b+c-d → (((a-b)+c)+d)

x*y*z → ((x*y)*z)

a+b+c*d*e → (a+b)+((c*d)*e)

IIT Patna 6

Examples of arithmetic expressions

a+b*c-d/e → a+(b*c)-(d/e)

a*-b+d%e-f → a*(-b)+(d%e)-f

a-b+c-d → (((a-b)+c)+d)

x*y*z → ((x*y)*z)

a+b+c*d*e → (a+b)+((c*d)*e)

IIT Patna 6

Examples of arithmetic expressions

a+b*c-d/e → a+(b*c)-(d/e)

a*-b+d%e-f

→ a*(-b)+(d%e)-f

a-b+c-d → (((a-b)+c)+d)

x*y*z → ((x*y)*z)

a+b+c*d*e → (a+b)+((c*d)*e)

IIT Patna 6

Examples of arithmetic expressions

a+b*c-d/e → a+(b*c)-(d/e)

a*-b+d%e-f → a*(-b)+(d%e)-f

a-b+c-d → (((a-b)+c)+d)

x*y*z → ((x*y)*z)

a+b+c*d*e → (a+b)+((c*d)*e)

IIT Patna 6

Examples of arithmetic expressions

a+b*c-d/e → a+(b*c)-(d/e)

a*-b+d%e-f → a*(-b)+(d%e)-f

a-b+c-d

→ (((a-b)+c)+d)

x*y*z → ((x*y)*z)

a+b+c*d*e → (a+b)+((c*d)*e)

IIT Patna 6

Examples of arithmetic expressions

a+b*c-d/e → a+(b*c)-(d/e)

a*-b+d%e-f → a*(-b)+(d%e)-f

a-b+c-d → (((a-b)+c)+d)

x*y*z → ((x*y)*z)

a+b+c*d*e → (a+b)+((c*d)*e)

IIT Patna 6

Examples of arithmetic expressions

a+b*c-d/e → a+(b*c)-(d/e)

a*-b+d%e-f → a*(-b)+(d%e)-f

a-b+c-d → (((a-b)+c)+d)

x*y*z

→ ((x*y)*z)

a+b+c*d*e → (a+b)+((c*d)*e)

IIT Patna 6

Examples of arithmetic expressions

a+b*c-d/e → a+(b*c)-(d/e)

a*-b+d%e-f → a*(-b)+(d%e)-f

a-b+c-d → (((a-b)+c)+d)

x*y*z → ((x*y)*z)

a+b+c*d*e → (a+b)+((c*d)*e)

IIT Patna 6

Examples of arithmetic expressions

a+b*c-d/e → a+(b*c)-(d/e)

a*-b+d%e-f → a*(-b)+(d%e)-f

a-b+c-d → (((a-b)+c)+d)

x*y*z → ((x*y)*z)

a+b+c*d*e

→ (a+b)+((c*d)*e)

IIT Patna 6

Examples of arithmetic expressions

a+b*c-d/e → a+(b*c)-(d/e)

a*-b+d%e-f → a*(-b)+(d%e)-f

a-b+c-d → (((a-b)+c)+d)

x*y*z → ((x*y)*z)

a+b+c*d*e → (a+b)+((c*d)*e)

IIT Patna 7

Type of value of expression

• If all operands of an operator are integer (int variable or integer constants), the value
is always integer

• Example: 9/5 will be 1 not 1.8
• Example:
int a=9,b=5;

printf("%d",a/b);

• If at least one operand is real, the value is real

• Caution: Since floating-point values are rounded to the number of significant digits
permissible, the final value is an approximation of the final result

• Example: 1/ 3.0 * 3.0 may have the value 0.99999 and not 1.0
• So checking if 1/ 3.0 * 3.0 is equal to 1.0 may return false!!

• The type of the final value of the expression can be found by applying these rules
again and again as the expression is evaluated following operator precedence

IIT Patna 8

Issues

int a=10,b=4,c;

float x;

c=a/b;

x=a/b;

• Value of c will be 2

• Value of x will be 2.0

• Want 2.5 to be stored in x

IIT Patna 9

Assignment expression

• Uses the assignment operator ’=’

• General syntax:

variable name = expression

• Left of = is called l-value, must be a modifiable variable

• Right of = is called r-value, can be any expression

• Examples:

• velocity = 20

• b = 15; temp = 12.5

• A = A + 10

• v = u + f * t

• s = u * t + 0.5 * f * t * t

IIT Patna 10

Assignment expression (contd.)

• An assignment expression evaluates to a value same as any other expression

• Value of an assignment expression is the value assigned to the l-value

• Example: value of

• a = 3 is 3

• b = 2*4 - 6 is 2
• n = 2*u + 3*v - w is whatever the arithmetic expression 2*u + 3*v - w evaluates to

given the current values stored in variables u, v, w

• Several variables can be assigned the same value using multiple assignment operators
a = b = c = 5;

flag1 = flag2 = ’y’;

speed = flow = 0.0;

• Easy to understand if you remember that

• The assignment expression has a value
• Multiple assignment operators are right-to-left associative

IIT Patna 11

Example

• Consider a= b = c = 5

• Three assignment operators
• Rightmost assignment expression is c=5, evaluates to value 5
• Now you have a = b = 5
• Rightmost assignment expression is b=5, evaluates to value 5
• Now you have a = 5
• Evaluates to value 5
• So all three variables store 5, the final value the assignment expression evaluates to is 5

IIT Patna 12

Types of l-value and r-value

• Usually should be the same

• If not, the type of the r-value will be internally converted to the type of the l-value,
and then assigned to it

• Example:

double a;

a = 2*3;

• Type of r-value is int and the value is 6
• Type of l-value is double, so stores 6.0

IIT Patna 13

Type mismatch

int a;

a = 2*3.2;

• Type of r-value is float/double and the value is 6.4

• Type of l-value is int, so internally converted to 6

• So a stores 6, not the correct result

• But an int cannot store fractional part anyway

• So just badly written program

• Be careful about the types on both sides

IIT Patna 14

More assignment operators

• +=, -=, *=, /=, %=

• Operators for special type of assignments

• a += b is the same as a = a + b

• Same for -=, *=, /=, and %=

• Exact same rules apply for multiple assignment operators

IIT Patna 15

Example

• Suppose x and y are two integer variables whose values are 5 and 10 respectively

x += y Stores 15 in x Evaluates to 15
x -= y Stores -5 in x Evaluates to -5
x *= y Stores 50 in x Evaluates to 50
x /= y Stores 0 in x Evaluates to 0

IIT Patna 16

Logical expression

• Uses relational and logical operators in addition

• Informally, specifies a condition which can be true or false

• Evaluates to value 0 or 1

• 0 implies the condition is false
• 1 implies the condition is true

• Examples:

(count <= 100)

((math+phys+chem)/3 >= 60)

((sex == ’M’) && (age >= 21))

((marks >= 80) && (marks < 90))

((balance > 5000) || (no of trans > 25))

(!(grade == ’A’))

IIT Patna 17

Relational operators

• Used to compare two quantities

• < is less than

• > is greater than

• <= is less than or equal to

• >= is greater than or equal to

• == is equal to

• ! = is not equal to

IIT Patna 18

Examples

10 > 20 — is false, so value is 0

25 < 35.5 — is true, so value is 1

12 > (7 + 5) — is false, so value is 0

32 != 21 — is true, so value is 1

• When arithmetic expressions are used on either side of a relational operator, the
arithmetic expressions will be evaluated first and then the results compared

a + b > c - d is the same as (a+b) > (c+d)

IIT Patna 19

Logical operator

• Logical AND (&&)

• Evaluates to 1 if both the operands are non-zero

• Logical OR (||)
• Results is true is at least one of the operand is non-zero

X Y X&&Y X||Y
0 0 0 0
0 non-0 0 non-0

non-0 0 0 non-0
non-0 non-0 non-0 non-0

IIT Patna 20

Logical operator (contd.)

• Unary negation operator (!)

• Single operand
• Value is 0 if operand is non-zero
• Value is 1 if operand is 0

IIT Patna 21

Example

• (4 > 3) && (100 != 200)

• 4 > 3 is true, so value 1
• 100 != 200 is true so value 1
• Both operands 1 for &&, so final value 1

• (!10) && (10 + 20 != 200)

• 10 is non-0, so value !10 is 0
• 10 + 20 != 200 is true so value 1
• Both operands NOT 1 for &&, so final value 0

• (!10) || (10 + 20 != 200)

• Same as above, but at least one value non-0, so final value 1

IIT Patna 22

Example (contd.)

• a = 3 && b = 4

• No parenthesis, so need to look at precedence and associativity
• = has higher precedence than &&
• b=4 is an assignment expression, evaluates to 4
• a = 3 is an assignment expression, evaluates to 3
• Both operands of && are non-0, so final value of the logical expression is 1

• Note that changing to b = 0 would have made the final value 0

IIT Patna 23

Example

void main () {
int i, j;

scanf("%d%d",&i,&j);

printf ("%d AND %d = %d, %d OR %d=%d\n", i,j,i&&j, i,j, i||j) ;

}
• If 3 and 0 are entered from keyboard, output will be 3 AND 0 = 0, 3 OR 0 = 1

IIT Patna 24

Special operator: AddressOf (&)

• Remember that each variable is stored at a location with an unique address

• Putting & before a variable name gives the address of the variable (where it is stored,
not the value)

• Can be put before any variable (with no blank in between)

int a =10;

printf("Value of a is %d, and address of a is %d\n", a, &a);

IIT Patna 25

Recall earlier issues

int a=10,b=4,c;

float x;

c=a/b;

x=a/b;

• Value of c will be 2

• Value of x will be 2.0

• Want 2.5 to be stored in x

IIT Patna 26

Solution: Typecasting

• Changing the type of a variable during its use

• General form

(type name) variable name

• Example

x = ((float) a)/ b;

• Now x will store 2.5 (type of a is considered to be float for this operation only, now it
is a mixed-mode expression, so real values are generated)

IIT Patna 27

Typecasting

• Not everything can be typecast to anything

• float/double should not be typecast to int (as an int cannot store everything a float/double
can store)

• int should not be typecast to char (same reason)

• General rule: make sure the final type can store any value of the initial type

IIT Patna 28

Example

int a,b;

float avg;

scanf("%d%d",&a,&b);

avg=(a+b)/2;

printf("%f\n",avg);
Wrong

int a,b;

float avg;

scanf("%d%d",&a,&b);

avg=((float)(a+b)/2);

printf("%f\n",avg);

int a,b;

float avg;

scanf("%d%d",&a,&b);

avg=(a+b)/2.0;

printf("%f\n",avg);

IIT Patna 29

More operators

• Increment (++), Decrement (−−)

• Both of these are unary operators; they operate on a single operand
• The increment operator causes its operand to be increased by 1

• Example: a++, ++count

• The decrement operator causes its operand to be decreased by 1.

• Example: i- -, - -distance

IIT Patna 30

Pre vs Post increment

• Operator written before the operand (++i, --i)

• Called pre-increment operator (also sometimes called prefix ++ and prefix --)
• Operand will be altered in value before it is utilized in the program

• Operator written after the operand (i++, i--)

• Called post-increment operator (also sometimes called postfix ++ and postfix --)
• Operand will be altered in value after it is utilized in the program

IIT Patna 31

Examples

• Initial values: a = 10; b = 20;

x = 50 + ++a; a = 11, x = 61

x = 50 + a++; a = 11, x = 60

x = a++ + --b; a = 11, b=19, x = 29

x = a++ + ++a; ??

Called side effects (while calculating some values, something else gets changed)

