Keras: Handwritten Digit Recognition using MNIST

Dataset

1T PATNA

February 9, 2017

OUTLINE

@ Introduction
@ Keras: Deep Learning library for Theano and TensorFlow

© Installing Keras
@ Installation

© Building Multi-Layer Perceptrons
@ Fundamentals
@ Building-Training-Testing
@ Problem with MLP

@ Loading Your own Data

e Important Links

Keras is

@ high-level neural networks library
@ written in Python

@ capable of running on top of either TensorFlow (open source software
library for numerical computation) or Theano (numerical computation
library for Python)

o developed with a focus on enabling fast experimentation

Guiding principles

o Modularity
e neural layers, cost functions, optimizers, initialization schemes,
activation functions, regularization schemes are all standalone modules
that you can combine to create new models
@ Minimalism
e Each module should be kept short and simple.
o Easy extensibility

o New modules are simple to add (as new classes and functions)
o easily create new modules allows, for total expressiveness, making
Keras suitable for advanced research.

o Work with Python

e Models are described in Python code, which is compact, easier to
debug, and allows for ease of extensibility.

e Python 2.7+

@ numpy: fundamental package for scientific computing with Python

@ scipy: library used for scientific computing and technical computing

e Matplotlib (Optional, recommended for exploratory analysis)

e HDF5 and h5py (Optional, required if you use model saving/loading
functions)

@ Theano

Installation

How to install Keras?
@ Follow instruction provided in " keras installation” file

Keras support

o Model
e core data structure of Keras
e a way to organize layers
e sequence or graph of standalone modules (neural layers, cost functions,
optimizers, initialization schemes, activation functions, regularization
schemes)

e Two types:

e Sequential
o Model class used with functional API

@ Sequential Model: a linear stack of layers.

Creating Sequential Model

Sequential Layers in Keras

@ Dense: fully connected NN layer

@ Activation: Applies an activation function

@ Dropout: Applies Dropout to the input. Dropout consists in randomly
setting a fraction p of input units to 0 at each update during training
time, which helps prevent overfitting

Convolutional Layers

Pooling Layers

@ ... and many more.

Creating Sequential Model

Activation Functions in Keras

@ Activations can either be used through an Activation layer, or through
the activation argument supported by all forward layers

e model.add(Dense(64))
model.add(Activation('tanh’))
is equivalent to:
model.add(Dense(64, activation="tanh’))
@ Available activations
o softmax: usually used on the output layer to turn the outputs into
probability-like values
o relu: rectified linear unit (ReLU), most popular activation function,
f(x) = max(x,0)
e tanh: hyperbolic tangent
o linear
e and many more.

Creating Sequential Model

Creating Sequential Model

@ use constructor:
model = Sequential([Dense(32, input_dim=784), Activation('relu’),
Dense(10), Activation('softmax’),]),

or

@ add layers via the .add() method:
model = Sequential()
model.add(Dense(32, input_dim=784)) model.add(Activation('relu’))

v

10 /24

Creating Sequential Model

The model needs to know what input shape it should expect

first layer in a Sequential model (and only the first, because following
layers can do automatic shape inference) needs to receive information
about its input shape

(]

Dense is regular fully connected NN layer

Dense(32, input_dim=784) specifies that it is

first (input) layer

output dimension is 32 (1 argument

input dimension is 784

If no activation function specified, no activation is applied (ie. "linear”

activation: a(x) = x).

Dense(10), Activation('softmax’) specifies that
o fully connected

not first layer (no need to specify inpute shape)

10 is output shape

softmax is activation function

11 /24

Step 1: Import libraries and Initialize seed value

@ import libraries
@ initilize seed

12/24

Step 2: Loading MNIST data

database of handwritten digits
training set of 60,000 examples, and a test set of 10,000 examples
Keras library provide function to load data set

images are 28 pixels x 28 pixels each

plot samples in matplotlib

13 /24

Step 3: Preprocess input data for Keras

@ dataset is a 3-dimensional array of instance, image width and image
height

@ For a multi-layer perceptron model we must reduce the images down
into a vector of pixels

@ In this case the 28x28 sized images will be 784 pixel input values

@ using the reshape() function

@ We can also reduce our memory requirements by forcing the precision
of the pixel values to be 32 bit

14 /24

Step 4: Preprocess class labels for Keras

@ shape of our class label data: 10 different classes, one for each digit,
but only have a 1-dimensional array.

@ y_train and y_test data are not split into 10 distinct class labels, but
rather are represented as a single array with the class values

15 /24

Step 5: Define model architecture

@ model is a simple neural network

@ one hidden layer with the same number of neurons as there are inputs
(784)

@ init: name of initialization function for the weights of the layer.
normal for values randomly drawn from normal distribution.

@ there are many other initializations available in Keras
@ rectifier activation function is used for the neurons in the hidden layer

@ softmax activation function is used on the output layer to turn the
outputs into probability-like values and allow one class of the 10 to be
selected as the models output prediction

16 /24

Step 6: Compile model

@ Before training, configure the learning process, using compile()
method. Three argements:

e optimizer: ANN training process is an optimization task with the aim
of finding a set of weights to minimize some objective function

Many optimizers are available in Keras

loss function: the objective function that model try to minimize

Many loss functions are available in Keras

list of metrics: used to judge performance of model, similar to objective
function however not used for training purpose

@ Logarithmic loss is used as the loss function

o ADAM gradient descent algorithm is used to learn the weights

17 /24

Step 7: Train model

using fit() function)

18 /24

Step 8: Evaluate model on test data

using evaluate() function)

19/24

Problem with MLP

Figure : All are different and must be trained

@ overfitting J

20 /24

Constructing the Right Network

which steps to follow to make an efficient image classifier?)

21/24

Loading Your own Data

How to load your own training and test data set in Keras?)

22/24

Important Links

@ Keras Official Documentation Page
@ Github Page
© Another Github Page

23 /24

https://keras.io/
https://github.com/fchollet/keras
https://github.com/wxs/keras-mnist-tutorial/blob/master/MNIST%20in%20Keras.ipynb

The End

	Introduction
	Keras: Deep Learning library for Theano and TensorFlow

	Installing Keras
	Installation

	Building Multi-Layer Perceptrons
	Fundamentals
	Building-Training-Testing
	Problem with MLP

	Loading Your own Data
	Important Links

