
Keras: Handwritten Digit Recognition using MNIST
Dataset

IIT PATNA

February 9, 2017

1 / 24

OUTLINE

1 Introduction
Keras: Deep Learning library for Theano and TensorFlow

2 Installing Keras
Installation

3 Building Multi-Layer Perceptrons
Fundamentals
Building-Training-Testing
Problem with MLP

4 Loading Your own Data

5 Important Links

2 / 24

Keras

Keras is

high-level neural networks library

written in Python

capable of running on top of either TensorFlow (open source software
library for numerical computation) or Theano (numerical computation
library for Python)

developed with a focus on enabling fast experimentation

3 / 24

Guiding principles

Modularity

neural layers, cost functions, optimizers, initialization schemes,
activation functions, regularization schemes are all standalone modules
that you can combine to create new models

Minimalism

Each module should be kept short and simple.

Easy extensibility

New modules are simple to add (as new classes and functions)
easily create new modules allows, for total expressiveness, making
Keras suitable for advanced research.

Work with Python

Models are described in Python code, which is compact, easier to
debug, and allows for ease of extensibility.

4 / 24

Dependencies

Python 2.7+

numpy: fundamental package for scientific computing with Python

scipy: library used for scientific computing and technical computing

Matplotlib (Optional, recommended for exploratory analysis)

HDF5 and h5py (Optional, required if you use model saving/loading
functions)

Theano

5 / 24

Installation

How to install Keras?

Follow instruction provided in ”keras installation” file

6 / 24

Keras support

Model

core data structure of Keras
a way to organize layers
sequence or graph of standalone modules (neural layers, cost functions,
optimizers, initialization schemes, activation functions, regularization
schemes)

Two types:

Sequential
Model class used with functional API

Sequential Model: a linear stack of layers.

7 / 24

Creating Sequential Model

Sequential Layers in Keras

Dense: fully connected NN layer

Activation: Applies an activation function

Dropout: Applies Dropout to the input. Dropout consists in randomly
setting a fraction p of input units to 0 at each update during training
time, which helps prevent overfitting

Convolutional Layers

Pooling Layers

... and many more.

8 / 24

Creating Sequential Model

Activation Functions in Keras

Activations can either be used through an Activation layer, or through
the activation argument supported by all forward layers

model.add(Dense(64))
model.add(Activation(’tanh’))
is equivalent to:
model.add(Dense(64, activation=’tanh’))

Available activations

softmax: usually used on the output layer to turn the outputs into
probability-like values
relu: rectified linear unit (ReLU), most popular activation function,
f (x) = max(x , 0)
tanh: hyperbolic tangent
linear
and many more.

9 / 24

Creating Sequential Model

Creating Sequential Model
use constructor:
model = Sequential([Dense(32, input dim=784), Activation(’relu’),
Dense(10), Activation(’softmax’),]),
or

add layers via the .add() method:
model = Sequential()
model.add(Dense(32, input dim=784)) model.add(Activation(’relu’))

10 / 24

Creating Sequential Model

The model needs to know what input shape it should expect

first layer in a Sequential model (and only the first, because following
layers can do automatic shape inference) needs to receive information
about its input shape

Dense is regular fully connected NN layer

Dense(32, input dim=784) specifies that it is

first (input) layer
output dimension is 32 (1st argument
input dimension is 784
If no activation function specified, no activation is applied (ie. ”linear”
activation: a(x) = x).

Dense(10), Activation(’softmax’) specifies that

fully connected
not first layer (no need to specify inpute shape)
10 is output shape
softmax is activation function

11 / 24

Step 1: Import libraries and Initialize seed value

import libraries

initilize seed

12 / 24

Step 2: Loading MNIST data

database of handwritten digits

training set of 60,000 examples, and a test set of 10,000 examples

Keras library provide function to load data set

images are 28 pixels x 28 pixels each

plot samples in matplotlib

13 / 24

Step 3: Preprocess input data for Keras

dataset is a 3-dimensional array of instance, image width and image
height

For a multi-layer perceptron model we must reduce the images down
into a vector of pixels

In this case the 28x28 sized images will be 784 pixel input values

using the reshape() function

We can also reduce our memory requirements by forcing the precision
of the pixel values to be 32 bit

14 / 24

Step 4: Preprocess class labels for Keras

shape of our class label data: 10 different classes, one for each digit,
but only have a 1-dimensional array.

y train and y test data are not split into 10 distinct class labels, but
rather are represented as a single array with the class values

15 / 24

Step 5: Define model architecture

model is a simple neural network

one hidden layer with the same number of neurons as there are inputs
(784)

init: name of initialization function for the weights of the layer.
normal for values randomly drawn from normal distribution.

there are many other initializations available in Keras

rectifier activation function is used for the neurons in the hidden layer

softmax activation function is used on the output layer to turn the
outputs into probability-like values and allow one class of the 10 to be
selected as the models output prediction

16 / 24

Step 6: Compile model

Before training, configure the learning process, using compile()
method. Three argements:

optimizer: ANN training process is an optimization task with the aim
of finding a set of weights to minimize some objective function
Many optimizers are available in Keras
loss function: the objective function that model try to minimize
Many loss functions are available in Keras
list of metrics: used to judge performance of model, similar to objective
function however not used for training purpose

Logarithmic loss is used as the loss function

ADAM gradient descent algorithm is used to learn the weights

17 / 24

Step 7: Train model

using fit() function

18 / 24

Step 8: Evaluate model on test data

using evaluate() function

19 / 24

Problem with MLP

Figure : All are different and must be trained

overfitting

20 / 24

Constructing the Right Network

which steps to follow to make an efficient image classifier?

21 / 24

Loading Your own Data

How to load your own training and test data set in Keras?

22 / 24

Important Links

Links
1 Keras Official Documentation Page

2 Github Page

3 Another Github Page

23 / 24

https://keras.io/
https://github.com/fchollet/keras
https://github.com/wxs/keras-mnist-tutorial/blob/master/MNIST%20in%20Keras.ipynb

The End

24 / 24

	Introduction
	Keras: Deep Learning library for Theano and TensorFlow

	Installing Keras
	Installation

	Building Multi-Layer Perceptrons
	Fundamentals
	Building-Training-Testing
	Problem with MLP

	Loading Your own Data
	Important Links

