
Game Bot using NEAT

Akshay Mohan (1301CS05) & Devansh Gupta (1301CS56)

1 Abstract

NeuroEvolution of Augmenting Topologies (NEAT) is a method of neuroevolution, which outperforms
the best �xed-topology method on a challenging benchmark reinforcement learning task. The idea
behind this project is to use NEAT approach in training neural networks to play several simple computer
games. The main purpose is to demonstrate the capability of the approach in learning to play a game
without having any prior information about the game.

2 Introduction

NEAT is an approach where neural network evolves arti�cially over several generations. It is found
to be better than �xed topologies neural networks in many reinforcement learning tasks. The �tness
function acts as a feedback to the algorithm and it tries to �nd the best neural network which can
maximize the �tness function.
Features of NEAT:

• Genetic Encoding: NEAT's genetic encoding scheme is designed to allow corresponding genes to
be easily lined up when two genomes cross over during mating.

• Tracking Genes through Historical Markings:- Whenever a new gene appears (through structural
mutation), a global innovation number is incremented and assigned to that gene. The innovation
numbers thus represent a chronology of the appearance of every gene in the system.

• Protecting Innovation through Speciation:- Speciating the population allows organisms to com-
pete primarily within their own niches instead of with the population at large. This way, topo-
logical innovations are protected in a new niche where they have time to optimize their structure
through competition within the niche.

• Minimizing Dimensionality through Incremental Growth from Minimal Structure:- NEAT biases
the search towards minimal-dimensional spaces by starting out with a uniform population of
networks with zero hidden nodes (i.e., all inputs connect directly to outputs). New structure is
introduced incrementally as structural mutations occur, and only those structures survive that
are found to be useful through �tness evaluations. In other words, the structural elaborations
that occur in NEAT are always justi�ed.

The main advantage of using NEAT is that the topologies are minimized and grown incrementally
during evolution resulting in higher learning speed than other neural evolution algorithms. The increase
in speed is attributed due to the following reasons:

• It allows disparate topologies to crossover in meaningful ways. It is possible become of genetic
encodings used in NEAT.

• It protects structural innovation through speciation.

• It minimizes the dimensionality of search space through incremental growth from minimal struc-
ture.

1



2.1 Literature survey

Seth Bling has implemented a game bot on famous game �Mario �using the NEAT approach. He named
the game bot as �MARI/O �. He used a population size of 300 and his bot was able to beat the level
after 34 generations and 24 hours of training, at which point the bot started playing signi�cantly well
as compared to a average human player.

3 Resources

The main idea of the NEAT approach is mentioned in the paper Stanley, Kenneth O., and Risto
Miikkulainen. �Evolving neural networks through augmenting topologies.�Evolutionary computation
10.2 (2002): 99-127.. It mentions the NEAT approach in detail and how it is better than the existing
neural evolution approaches.
We have used the python library for NEAT. The documentation of the library is provided at NEAT
Documentation
Code for Pong Pong Game
Code for MARI/O MARI/O
Emulator for mario BizHawk Emulator
Code for Atari Breakout Atari Breakout
Code for 2048 2048 Game

3.1 Work done

We have used NEAT approach in 3 main games:

• Pong - It is a table tennis sports game featuring simple two-dimensional graphics.

• 2048 - The game's objective is to slide numbered tiles on a grid to combine them to create a tile
with the number 2048.

• Atari Breakout - It is a classic arcade game. The objective of the game is to destroy all the
blocks without losing the turn.

The github location for the bots of all the 3 games is : Game Bots using NEAT code
Pong Bot

Figure 1: Pong bot

• The inputs to the pong bot neural network were the x and y coordinates of the enemy tile, the
x and y coordinates of the ball and the x and y coordinates of the self tile. Tanh activation
function was used and the output was mapped to the two possible moves i.e. up or down.

2

http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
 http://neat.readthedocs.io/en/latest/
 http://neat.readthedocs.io/en/latest/
 http://www.intelligence.tuc.gr/~robots/ARCHIVE/2010w/projects/Mpampalis/pong.py
http://pastebin.com/ZZmSNaHX
http://tasvideos.org/BizHawk.html
http://programarcadegames.com/python_examples/show_file.php?file=breakout_simple.py
https://github.com/lewisjdeane/2048-Game/blob/master/2048.py
https://github.com/AKIRA85/NEAT-Game-bot


Figure 2: Fitness and species wrt generations for Pong

• Error plot validation set

• The pong bot was tested on two di�erent structures. In the �rst one the inputs to the neural
network were the y coordinate of the ball and the y coordinate of the self tile. In the other
structure the inputs were as mentioned in item 1. The second structure learnt to play the game
signi�cantly faster than the �rst one.

• Figures

2048 Bot

Figure 3: 2048 bot

• The 2048 game was taken from the link mentioned in resources. The inputs to the neural network

3



Figure 4: Fitness and species wrt generations for 2048

in NEAT were all the 16 tiles of the game and the corresponding output was the best possible
move corresponding to the given state.

• Error plot validation set.

• Fitness function used in �nal architecture: total_score + 0.01*max_tile Here total_score in-
dicates the total score achieved in the game and max_tile is the value of the maximum tile
obtained in the game.

• Di�erent �tness function and neural network structure gave di�erent results. On applying �tness
function as the total score obtained in the game without allowing the recurrent neural network
the maximum score obtained in the game after training for 150 generations did not exceed
1000 whereas on applying �tness function as �total_score + 0.01*max_tile_value�and allowing
recurrent neural networks the maximum score obtained after training for 150 generations exceeded
1500.

Atari Breakdown Bot

Figure 5: Atari Breakout bot

• In the game, a layer of bricks lines the top section of the screen. A ball travels across the screen,
bouncing o� the top and side walls of the screen. When a brick is hit, the ball bounces away
and the brick is destroyed. The player loses when the ball touches the bottom of the screen.
To prevent this from happening, the player has a movable paddle to bounce the ball upward,
keeping it in play.

4



Figure 6: Fitness and species wrt generations for Atari Breakout

• The inputs to the neural network were the x coordinates of the ball and the paddle and the state
of each block represented as 1 for present otherwise 0 for destroyed. Tanh activation function
was used and the output decides the direction in which the paddle is moved i.e. left or right.

3.2 Future work

For future work we can try various �tness functions for the above mentioned games and compare their
results. Also we can try and optimize the mutation parameters to achieve better results.

5


	Abstract
	Introduction
	Literature survey

	Resources
	Work done
	Future work


