Car Evaluation

02/March/2017

1 Group members

’ Name ‘ Roll number ‘ email-id

Shivam Porwal 1611CS14 shivam.mtcs16@iitp.ac.in
Debanjan Sarkar | 1611CS17 | debanjan.mtcs16@iitp.ac.in

2 Abstract of the project

Car Evaluation Dataset evaluate the target concept(CAR) with 3 other intermediate concept. PRICE (overall
price), TECH (technical characteristic) and COMFORT (comfort). Now totally we have 6 attribute, each
attribute is a part of one of the intermediate concept as described above. These attributes are :
Buying(buying price)
Maint(price of maintenance)
Doors(number of doors)
Persons(capacity in terms of persons to carry)
Lug _Boot(the size of luggage bot)
. Safety(estimated safety of the car)
The number of the instances in the training data are 1728 | and there are 6 number of attributes as
mentioned above. This is basically a multi-class class1ﬁcat10n problem. we will classify the instance
into 4 classes:

Here are the attribute values:

e O N

Table 1: Attribute values
buying {v-high, high, med, low}

maint {v-high, high, med, low}
doors {2, 3, 4, 5- more}
persons {2, 4, more}

lug _boot {small, med, big}
safety {low, med, high}

Table 2: Class Distribution (number of instance per class)
unacc 1210

acc 384
good 69
v-good 65

3 Introduction

To implement such type of model we will use the concept of Convolution Neural Network.To implement
it we will use the python library "keras" in which we are using backend as Theano. To find the highest

accuracy we will consider various scenarios or cases which are described in the upcoming topics.

3.1 Data sources

https://archive.ics.uci.edu/ml/datasets/Car+Evaluation

3.2 Literature survey

In this survey we have studied various techniques on car evaluation dataset. FEach technique has

different output with different accuracies. The accuracy achieved under different experiment conditions

or setting by Decision Tree, Naive Bayesian, and Artificial Neural Network (ANN) are presented.
Classification Accuracy of Decision Tree :

Decision tree builds classification models in the form of a tree structure. It breaks down a dataset
into smaller and smaller subsets while at the same time an associated decision tree is incrementally
developed. The final result is a tree with decision nodes and leaf nodes.

Percentage Split Time in Seconds Decision Tree
Training | Testing | Build Test Correct | Incorrect
% % % %

90 10 0.07 | 0.01 93.06 | 693
66 A4 0.01 0.0l 90.81 9.18
50 50 0.01 {002 927 729
10 Folds 001 | 0.0l 93.22 6.77

fig : Accuracy Result of Decision Tree

Classification Accuracy of Naive Bayesian : The Naive Bayesian algorithm, named after
Thomas Bayes is a learning algorithm as well as a statistical method for classification. It captures
uncertainty in a principled way by using probabilistic approach. Naive Bayesian classification provides
practical learning algorithms and prior knowledge and observed data can be combined.

Percentage Split Time in Seconds Naive Bayesian
Training | Testing | Build Test Correct | Incorrect
Yo % % %

0 10 0.02 0.05 93.06 6.93
66 44 0 0.03 92.51 748
50 50 0 0.04 927 729
10 Folds 0 0.25 9351 6.48

fig : Accuracy Result of Naive Bayes

Classification Accuracy of ANN :
The Artificial Neural Network (ANN) algorithm takes data as input then process and generalizes
output using biological brain patterns of humans or animals. It is designed to learn in a non linear
mapping between input and output data.

Percentage Split Time in Seconds ANN
Training | Testing Build Test Correct | Incorrect
% % %o Y%

90 10 7.1 0 93.06 6.93
66 44 7.19 0.01 90.81 9.18
50 50 6.98 0.02 927 7.29
10 Folds 7 0.03 93,51 6.48

fig : Accuracy Result of ANN

The following tests were performed by Tijana Jovanovic, Faculty of Organisation Sciences, University
of Belgrade.

In this example they will be using 80% of data for training the network and 20% of data for testing it.
Training attempt 1:

e Network Type: Multi Layer Perceptron

e Training Algorithm: Backpropagation with Momentum
e Number of inputs: 21

e Number of outputs: 4 (unacc,acc,good,vgood)

e Hidden neurons: 14

Training Parameters:
e Learning Rate: 0.2
e Momentum: 0.7

e Max. Error: 0.01

Training Results:
For this training, they used Softmax transfer function.

Following results were generated in the First Attempt

Network Inputs Real Outputs

Instance c -

=Ry Buying Maint Doors Persons Lug boot Safety Unacc ACC (Good ViGood
1z 0.0,0,1(vhigh} [0,0.0,1(vhigh}) 1,0,0,002) 1,0,0(2) 0,1,0.(med) 0.1.0imed) 1 0 0 0
2. 1,0,0,0 (low) |1,0,0,0 (low) 0,001 (5more) |0,1,0(4) 0,0.1 (big} 0,0,1 (high} 0 0 0 i
3 1,0,0,0 (low) |1,0,0,0 (low) 0,001 (5more) 0,1,0(4) 1,0,0 (small} 1,0,0 (low} 1 0 0 0
4, 1,0,0,0 (low) |1,0,0,0 (low} 0,001 (5more} [0,0,1 (more) 1,0,0 (small) 0,1,0 (med) 0 1 0 0
B 1,0,0,0 (low)]0,1,0,0 (med) 0,001 (5more) |0,1,0 (4) 0,0.1 (big) 0,1,0 (med) 0 0 1 0

The output neural network produced for this input is, respectively:

Network Inputs Outputs neural network produced
ﬁ::ht::ce Buying Maint Doors Persons Lug boot Safety Unacc [Acc Good ViGood
1. 0.0,0.1ivhigh}]0.0.0,1{vhigh} 1.0,0,002) 1.0,0(2) 01,0 (med) 0,1.0{med) 1 0 0 0
2. 1.0,0.0 (low) 1.0.0,0 {low} 0.0,0,1 (5more) |0.1,0 (4} 0.0.1 (hig) 0.,0.1 (high} 0.0009 0.0002 0.0053 09931
& 1,0,0,0 (low) [1,0,0,0 (low) 0,001 (5more) |0,1,0 (4} 1.0,0 (small} 1,0,0 (low) 1 0 0,0001 0
4. 1,0,0,0 (low) [1,0,0,0 (low) 0,001 (5more) |0,0,1 (more} |1,0,0 (small} 0,1,0 {med) 0,0033 0,9965 0,0025 0
5 1.0,0,0 (low) 10,1,0,0 imed) 0.0,0,1 (5more) |0.1,0 (4} 0,01 (big) 0,1,0 (med) 0.0002 0.0006 09973 0.0016

Training attempt 2:

e Network Type: Multi Layer Perceptron

Training Algorithm: Backpropagation with Momentum

Number of inputs: 21
e Number of outputs: 4 (unacc,acc,good,vgood)

Hidden neurons: 14

Training Parameters:

e Learning Rate: 0.3
e Momentum: 0.6

e Max. Error: 0.01

Training Results:
For this training, they used Softmax transfer function.

Following results were generated in the First Attempt

Network Inputs Outputs neural network produced
T Buying Maint Doors Persons Lug boot Safety Unacc Acc (Good VGood
number
1. 0.0,0,1(vhigh) [0,0,0,1{vhigh} 1.0,0,0(2) 1,0,0(2) 01,0, (med) 0.1,0(med) 1 0 0 0
2. 1.0,0,0 (low) |1,0,0,0 (low) 0.0,0,1 (5more} (0,10 (4) 0.0.1 (big) 0.0,1 (high) 0 0 0 09996
3. 1,0,0,0 {low) |1,0,0,0 {low) 0,0,0,1(5more} 0,10 (4} 1.0,0 (small) 1,00 (low) 1 0 0 0
4. 1,0,0,0 (low) 1,0,0,0 (low) 0,0,0,1(5more) 0,01 (more) |1,0,0 (small} 0,1,0 (med) 0 1 0 0
5. 1,0,0,0 (low) 0,1.0.0 (med) 0,0,0,1 (5more} 0,10 (4) 00,1 (big) 0.1.0 imed) 0 0 ;| 0

3.3 Network Architecture :

fig(1) : Convolution Neural Network

3.4 Our Results:
Case 1:

e Input Neuron: 21

e Number of Hidden Layers: 2

e Hidden Neurons in first layer: 100
e Hidden Neurons in first layer: 80

e Output Neurons : 4

e Activation function : Softmax function (both in hidden layer and output layer)

e Learning rate : 0.01
e Momentum : 0.7
e Number of Iterations : 50

Result of Case 1:

Epoch 48/50

1051/1051 [1 - 0s - loss: 0.1856 - acc: 0.6936 - val_loss: 0.1853 - val_acc: 0.7023
Zpoch 49/50
1051/1051 [1 - 0s - loss: 0.1855 - acc: 0.6936 - val_loss: 0.1853 - val_acc: 0.7023
Epoch 50/50
1051/1051 [1 - 0s - loss: 0.1855 - acc: 0.6936 - val_loss: 0.1852 - val_acc: 0.7023

{'mean squared error :', 0.1852265499595%8029)
('"PREDICTED', array([[0.25511843, 0.25099114, 0.24640666, 0.24748382],
[0.25787479, 0.25146687, 0.24438058, 0.24627775],
[0.25605804, 0.25050306, 0.24628173, 0.24715714],
[0.25801155, 0.25079462, 0.24267635, 0.24851747],
[0.25723404, 0.25106379, 0.2437406 , 0.24796154],
[0.25563523, 0.25113648, 0.24443632, 0.24879205]], drype=float3z)})
('"ORIGINAL', array([[1, O, 0O, O],
i, 0, 0, 01,
i, 0, 0, 01,
i, 0, 0, 01,
i, 0, 0, 01,
1, 0, 0, 011}

fig(a): Output of Casel

Graphical Representation:

[Figure 1 — [m] x

fig(b): Accuracy plot of Casel

[Figure 1 - O X

%x=15.8266 y=0.187719

fig(c): Error plot of Casel
Case 2:
e Input Neuron: 21
e Number of Hidden Layers: 3
e Hidden Neurons at Layer 1: 100

e Hidden Neurons at Layer2 : 80

Momentum : 0.7

Learning rate : 0.1

Hidden Neurons at Layer2 : 70
Output Neurons : 4

Activation function : Softmax function (both in hidden layer and output layer)

e Number of Iterations : 50

Result of Case 2:

Epoch 48/50
1253/1253 [;

Epoch 48/50

] - 03 - loss: 0.1855 - acc: 0.6872 - val loss: 0.1854 - val acc: 0.7220

125371253 [;
Epoch 50/50

] - 03 - loss: 0.1855 - acc: 0.6872 - val loss: 0.185% - val acc: 0.7220

125371253 [

('"ORIGINAL"
1,
1,
o,
i,
o,

g,
g,
o,

] - 03 - loss: 0.1855 - acc: 0.6872 - val loss: 0.185% - val acc: 0.7220

('mean squared erzor :', 0.18527450728416442)
(' PREDICTED',

array([[0.25498781, 0.25123912, 0.24630475, 0.24746837],

[0.25774479, 0.2517167%, 0.24427842,
[0.25592873, 0.25075242, 0.24617855,

[0.25769141, 0.2488703 , 0.24372566,
[0.2569291 , 0.24913627, 0.24478082,
[0.2553277 , 0.2492083 , 0.24547216,
array([[1, O, O, O],

0, 0,
0, 0,
1,
o,
1,

=)

.24626008],
.247140261,

=)

=)

.24971268],
.24915382],
.249991771], dtype—fleat32))

oo

o1,
o1,

o1,

o1,
0111}

fig(d): Output of Case2

Graphical Representation:

[1] Figure 1 o [m] x

fig(e): Accuracy plot of Case2

[Figure 1 - m] 'S

fig(f): Error plot of Case2

Case 3:

Input Neuron: 21

Number of Hidden Layers: 4

Hidden Neurons at Layer 1: 100

Hidden Neurons at Layer 2 : 80

Hidden Neurons at Layer 3 : 70

Hidden Neurons at Layer 4 : 60

Output Neurons : 4

Activation function : Softmax function (both in hidden layer and output layer)

Learning rate : 0.1

Momentum : 0.7

Number of Iterations : 50

Result of Case 3:

Epoch 98/100

1377/1377 [

Epoch 99/100

1377/1377 [

Epoch 100/100

1377/1377 [] - 0s - loss: 0.1831 - acc: 0.6848 - val loss:
('mean squared error :', 0.182464122 7539)
(*PREDICTED', array([[0.26247782, 0.25109023, 0.24260128, 0.2438307 1,

[0.26528937, 0.25153652, 0.24056438, 0.24260377],

[0.26358503, 0.25057003, 0.24240461, 0.24344037],

[0.2 0.24856946, 0.24161132, 0.2459363],

[0.2 0.24867274, 0.24234924, 0.24680793],

[o. 76, 0.24912071, 0.24032374, 0.24557976]], dtype=float32))
('ORIGINAL', array([[1, O, O, O],

1, 9, 2, 91,

1, 9, 2, 91,

[1; 04 05 0]

[0 04 15 0]

2, 9, 2, 1111

fig(g): Output of Case3

Graphical Representation:

Figure 1 -

model accuracy

1] - 0s - losa: 0.1832 - acc: 0.6848 - val loss:

] - 0s - losa: 0.1831 - acc: 0.6848 - val loss:

0.1826 - val acc: 0.7607
0.1825 - wval acc: 0.7607

0.1825 - wval acc: 0.7607

0.8

— train

| — test

0.6

accuracy
=]
i

e
=

0.3

0.2

01

epoch

fig(h): Accuracy plot of Case3

100

Figure 1

model loss
0.188

train
test

0.187

0.186

0.185

loss.

0.184

0.183

0.182
100

epoch

fig(i): Error plot of Case3

Case 4:

e Input Neuron: 21

e Number of Hidden Layers: 4

e Hidden Neurons at Layer 1: 100
e Hidden Neurons at Layer2 : 80
e Hidden Neurons at Layer 3 : 70
e Hidden Neurons at Layer 4 : 60
e Output Neurons : 4

e Activation function : Softmax function (both in hidden layer and output layer)
e Learning rate : 0.1

e Momentum : 0.7

e Number of Iterations : 2000

Result of Case 4:

Epoch 1996/2000 >

1377/137] - 0s - loss: 0.1234 - acc: 0.6848 — val loss: 0.1100 — val acc: 0.7607
] - 0s - loss: 0.1234 - acc: 0.6848 — val loss: 0.1100 — val acc: 0.7607
] - 0s - loss: 0.1234 - acc: 0.6848 — val loss: 0.1100 — val acc: 0.7607
137771377 [] - 0s - loss: 0.1234 - acc: 0.6848 — val_loss: 0.1100 — val acc:
Epoch 2000/2000
137771377 [] - 0s - loss: 0.1234 - acc: 0.6848 — val _loss: 0.1099 — val acc: 0.7607
('mean squared error :', 0.10994575832813894)
(*PREDICTED', array([0.18295768, 0.1211511 , 0.12382458]
[0.57741946, O. , 0.1189913 , 0.12200451],
[0.53014457, 0.17648116, 0.11531767, 0.11805657],
[0.56895602, 0.18234132, 0.12239027, 0.12631236],
[0.54921758, 0.18871984, 0.12910526, 0.13295737],
[0.55484444, 0.1873481 , 0.12680177, 0.13100566]], dtype=float32))
('ORIGINAL', array([[1, O, O, 01,
[, o, 9, o1,
[, o, 9, o1,
[, o, 9, o1,
[e, o, 1, 01,
[e, 0, o, 111))

Graphical Representation:

fig(j): output of Cased

Figure 1 - O 4

- model accuracy

— train
— test

0.7

accuracy
o o o
= n o

o
w

o
(N]

0.1

0 500 1000 1500 2000
epoch

fig(k): Accuracy plot of Case4
Figure 1 I

model loss

— train
018 | — ftest

0.17

0.16

015

loss

011 \

0 500 1000 1500 2000
epoch

fig(1): Error plot of Case4

3.5 Implementation :

The implementation of following models can be found on following link :
https://github.com/shiv8989/carevaluation

4 Future work :

In this program we are training the model based on some hidden layer. if the size of hidden layer is
increased then model can be trained more accurately but complexity of the network may increase. Due
to which it is also possible for reduction in accuracy. To solve this problem we can add more data, due
to increase in data-size. Model can be trained more accurately and accuracy will increase. Due to the
limited amount of data the accuracy can not cross the certain threshold. If we train the network by
large number of data items performance will increase.

References

[1] Knowledge acquisition and explanation for multi-attribute decision making by M Bohanec, V Ra-
jkovic

[2] Machine Learning by Function Decomposition Blaz Zupan, Marko Bohanec, Ivan Bratko, Janez
Demsar

[3] https://archive.ics.uci.edu/ml/datasets/Car+Evaluation

[4] http://neuroph.sourceforge.net/tutorials/car.valuationl/car.valuationl.html

10

