
Recursion in Neural Programmer Interpreter

Ankit Kumar(1301CS10) & Arindam Banerjee(1301CS12)

1 Abstract of the project

Empirically, neural networks that attempt to learn programs from data have exhibited poor general-
izability. Moreover, it has traditionally been difficult to reason about the behavior of these models
beyond a certain level of input complexity. In order to address these issues, we propose augmenting
neural architectures with a key abstraction: recursion. As an application, we implement recursion in
the Neural Programmer-Interpreter framework on simple task of grade-school addition.Training neural
networks to synthesize robust programs from a small number of examples is a challenging task. We
find that recursion makes it easier for the network learn the right program and generalize to unknown
situations. Recursion enables provable guarantees on neural programsâ behavior without needing to
exhaustively enumerate all possible inputs to the programs.

2 Introduction

2.1 Literature survey

There have been many previous known startegies to improve generalization through use of curriculum
learning, where the model is trained on inputs of gradually increasing complexity. However, models
that make use of this strategy eventually fail after a certain level of complexity (e.g. the single-digit
multiplication task in Zaremba et al. (2016), the bubble sort task in Reed de Freitas (2016), and
the graph tasks in Graves et al. (2016)). In this version of curriculum learning, even though the
inputs are gradually becoming more complex, the semantics of the program is succinct and does not
change. Although the model is exposed to more and more data, it might learn spurious and overly
complex representations of the program, as suggested in Zaremba et al. (2016). That is to say, the
network does not learn the true program semantics. There has been previous work on general Neural
Programming Architecture (NPA), similar to Neural Programmer-Interpreter (NPI) in Reed de Freitas
(2016).However the notion of recursion in the neural program architecture is unique and we expect to
achieve 100 percent accuracy for our addition task.

2.2 Resources

Since our problem was grade school addition, we did not require any special dataset.We have trained
three LSTM networks that control the flow of program and arguments for the program. The dataset for
these LSTMs have been generated artificially by us to incorporate the algorithm mentioned in Section
3.

1



3 Core Architecture

1 def RUN(p,a):
2 if i[1] < 0: # Base Case Handling
3 # handle base case
4 return
5

6

7 print("RUN:" + str(p) + " "+ str(a) + "\n")
8

9 programs = getPrograms(p) # LSTM for programs
10 probabilities = getProbabilities(programs) # LSTM for r values
11 arguments = getArguments(programs) # LSTM for arguments
12

13

14 r = 0
15 for pid, aid, prid in zip(programs, arguments, probabilities):
16 if isPrimitive(pid):
17 call(pid, aid)
18 else:
19 RUN(pid, aid)
20

21 if prid > 0.5:
22 break

4 Work done

We have successfully implemented the recursion in the NPI propsed by Reed de Freitas (2016).However
instead of using a common hidden state, we have used three separate LSTM architectures and trained
them separately.

• We have generated dataset artificially for training three LSTM networks namely PLSTM,RLSTM,ALSTM.

• PLSTM Model: This was the model trained to get series of program codes for execution in which
different subprograms are given different ids for training purpose.We have generated possible
program sequences for training and replicated data to make neural net memorize the system.Our
PLSTM architecture consists of LSTM layer followed by a deep dense layer of four neurons.We
have rigorously trained the LSTM network with abundant training data and by tuning the
hyperparameters to achieve accuracy of 100 percent.

• RLSTMModel: In the algorithm mentioned in Section 3 values of ’r’ determine the termination of
the main loop.We needed to train model to learn ârâ value from sequence of program codes.The
architecture of RLSTM was composed of LSTM layer with fully connected Dense Layer We
have rigorously trained the LSTM network with abundant training data and by tuning the
hyperparameters to achieve accuracy of 100 percen

• ALSTM ModeL : This was the model trained to learn next argument values from present argu-
ment values.It control shifting of pointers in addition.The architecture of RLSTM was composed
of LSTM layer with fully connected Dense Layer.We have rigorously trained the LSTM network
with abundant training data and by tuning the hyperparameters to achieve accuracy of 100
percent.

• Error Measures Since this is based on NPI, which are based on LSTM and there are very few
training samples, the LSTMs memoized the sequences really well, giving us a 100 percent accu-
racy.

• We have achieved cent percent accuracy for the given task.

• Github Link: https://github.com/SageEx/NPI-Recursion-Addition

2

https://github.com/SageEx/NPI-Recursion-Addition


4.1 Future work

Due to constarint of time, we have done some modifications in the architecture.
The base case in NPI recursion is when the current arguments leads to the stack counter return to
the previous stack item. The arguments and the programs are used to indicate that the current stack
needs to be over. However in our case, the next program is independent of the arguments. Thus, we
have coded the base case separately.
Another thing is that the language being python, we have not acchieved true tail recursion. We can
implement tail recursion separtely or change the language.

3


	Abstract of the project
	Introduction
	Literature survey
	Resources

	Core Architecture
	Work done
	Future work


