Tackling Black Box Learning using Neural Networks

Titas Nandi
Supervisor: Dr. Arijit Mondal

1 Abstract of the project

The project aims at developing a neural network architecture to tackle the problem of representation
learning. We train a classifier to predict labels on a dataset that is not human readable, without the
knowledge of what the data consists of. We create a deep learning model that can learn from both la-
beled and unlabeled data, to take advantage of the large amount of unannotated data available. The
system will be tested on 10,000 instances from a data distribution whose source is again unknown.
The idea is inspired from the Black Box Challenge on Kaggle as part of ICML 2013 Challenges in
Representation Learning and the training and test data is obtained from there.

Some of the interesting approaches used for solving this problem include using a sparse filtering tech-
nique [I] and an autoencoder architecture using ensemble learning [2].

2 Introduction

2.1 Literature survey

We looked into the major approaches used by the top performing teams in the challenge to get an
idea about possible methodologies and benchmark results. The major issue was to envisage methods
to extract information from the unsupervised data to support supervised classification. Lee [3] used
an interesting method of assigning pseudo labels to the unsupervised data and train and update
the pseudo labels every weight update of the neural network. Lukasz [I] used a method in which the
unsupervised data was not directly used in training, but used in a pre-training step for feature
selection. They used a method of unsupervised feature selection called sparse filtering, and used the
reduced set of features for supervised classification. Xie [2] stacked horizontal and vertical voting
along with deep learning to attain good results on the task.

3 Resources

We used the data provided by the organizers of this challenge. It consists of:

’ Train ‘ Test ‘ Unannotated ‘ Classes ‘
| 1000 | 10000 | 135735 | 9 |

Table 1: Data ICML Black Box Challenge

For sparse filtering, we referred the famous paper written by Ngiam [4] and the code available on github
E].This is a very generic version which we had to modify for our problem. For sparse filtering method,
we also took help from code written by the best performing team in the contest E] For training neural
nets, we used Keras E] and we used both Matlab and Python for programming.

"https://github. com/jngiam/sparseFiltering
Zhttps://bitbucket.org/dthal/blackbox-challenge-code
Shttps://keras.io/

https://github.com/jngiam/sparseFiltering
https://bitbucket.org/dthal/blackbox-challenge-code
https://keras.io/

3.1 Work done

We focused on both the methodologies for using the unsupervised data to our help. We used sparse
filtering for dimensionality reduction, and then trained a Multi Layer Perceptron model on the
supervised data using the selected features. In a separate approach, we also trained a neural network
on both supervised and unsupervised data together, using the concept of pseudo labels. We present
all our experimentations and architectural details in the following sections, along with baseline and
benchmark results.
3.1.1 Baselines
The following baselines have been proposed by the organizers of the task:

e Random Baseline - 11.1%

e Logistic Regression - 21.1%

e ZCA + 1 layer net - 41%

e ZCA + 3 layer net - 51.5%
It is evident that the last baseline is quite a strong one and tough to beat. This was reflected in the
competition where only one-third of the participating teams could beat this baseline.
3.1.2 Benchmark Results

e Sparse Filtering + Feature Selection + SVM with linear kernel - 70.22 %

e Pseudo Labels + Denoising Autoencoder + Dropout - 69.58 % |[3]

e Horizontal and Vertical Ensemble for Classification - 69.14 %

3.1.3 Sparse Filtering

Sparse filtering is a method for unsupervised feature learning. The beauty of the algorithm lies in
its simplicity - it works as a method for producing an alternate (reduced dimensionality) representation
of the features by optimizing a simple cost function - the sparsity of L2-normalized features.
This is in contrast to other popular unsupervised methods like sparse RBMs and autoencoders, which
essentially try to approximate the distribution of the data and thus require a lot of hyperparameter
tuning. Sparse filtering works on optimization of:

e Population sparsity - Only a few non-zero features are essential for a given training example
e Lifetime sparsity - Only a few training examples are essential for a given feature

e High dispersal - The distribution of features for any training example must be similar to that
of any other example, this ensures uniform activation of features

Sparse filtering introduces competition among features by reducing them to their L2 norms, and retains
only the non-redundant ones.

3.1.4 Sparse Filtering + Supervised Training
The approach towards solving this challenge using this method is detailed below:
e Break the large unsupervised data into 5000 example chunks for faster training

e Train a feedforward Sparse Filter on these chunks, where each chunk will be pulled in for
training in data batches of given count, and produce 10 feature sets having revised weights

A Row-Normalized
Features, f

Features, f

Figure 1: Left: Sparse filtering showing two features (f1, f2) and two examples (red and green).
Each example is first projected onto the ¢5-ball and then optimized for sparseness. The ¢5-ball is
shown together with level sets of the ¢1-norm. Notice that the sparseness of the features (in the ¢,
sense) is maximized when the examples are on the axes. Right: Competition between features due
to normalization. We show one example where only f; is increased. Notice that even though only

Column-Normalized

-
Decrease.in f,
\

Increase
only in f;

f1 1s increased, the normalized value of the second feature, f> decreases.

e We picked out the top performing 120 features out of 1875 initially

e Find the revised representation for the training and test (or development) data from these
learned weights

e Train a feedforward Neural Network on the supervised data using these revised weights

e Experiment with the Neural Network architecture to achieve the best possible results on the
public dataset

Table 2 illustrates the various experiments in neural network architecture that we did. Our best
performing architecture achieves an accuracy of 64.74% on the public set, at par with the best
performing systems.

Submission Neurons | Layers | Activation| Dropout | Optimizer | Epoch | Batch | Accuracy
Size
Best 1500 2 sigmoid 0.4 adam 200 128 64.74
1 1000 1 relu 0.4 adam 20 128 60.12
2 200 2 sigmoid 0.4 adam 20 128 51.22
3 1000 2 sigmoid 0.4 adam 100 128 64.02
4 1000 3 sigmoid 0.4 adam 100 128 63.86
5 1000 2 sigmoid 0.4 adam 1000 128 63.80
6 1500 2 sigmoid 0.5 adam 200 128 64.50
7 2000 2 sigmoid 0.4 adam 200 128 64.66
8 1500 2 sigmoid 0.3 adam 200 128 64.66
9 1500 2 sigmoid 0.4 adam 200 256 64.42
10 1500 2 sigmoid 0.4 sgd 200 128 39.50
11 1500 2 relu 0.4 adam 200 128 61.72
Table 2: Neural Network Experiments on sparsed features
3.1.5 Plots

Since we could not track the test labels for the competition, thus, here we present the plots of epochs
vs accuracy and loss vs accuracy on the validation set obtained by splitting the 1000 training
examples in 1:4 ratio. The results are obtained on our highest performing neural network model.

We can see there are significant improvements in accuracy due to sparse filtering.

accuracy

accuracy

model accuracy

40

01
0

0.0 .

model loss

01
0

50 100 150 200 0 50
epoch

100 150 200
epoch

Figure 1: Validation plots for original data - 1875 dimensions

model accuracy
:

0.0

model loss
|

50 100 150 200 0 50

epoch

Figure 2: Validation plots for sparse filtered and ensembled data

100 150 200
epoch

1200 dimensions

L L L I L L L L
40 E 20 -10 0 10 20 E] 40

(b) with unlabeled data and Pseudo-Label (+PL)

(a) without unlabeled data (dropNN)

Figure 3: t-SNE 2-D embedding of the network output of MNIST test data

3.1.6 Pseudo Labels

This is a very interesting approach adopted by one of the teams, wherein we also use the unsupervised
data in a supervised learning framework by generating probable labels, or pseudo labels, for it. In
effect, this method works because it induces entropy regularization [5], that prefers low density
separation among classes. We train a neural network using both sets of data to improve the gener-
alization performance, the pseudo labels are expected to gradually improve (called self-training)
and finally converge towards their correct values after several runs of training. The approach is detailed
below:

e We train a feedforward neural net on the supervised examples

e We find probable labels of the unsupervised data

Retrain the neural network with the combined data, i.e, supervised data with true labels and
the unsupervised data with pseudo labels

At this point, the network might not have learnt the pseudo labels properly or might be over-
fitted

e Retrain the network until convergence (till there are no significant changes in predicted labels)

Table 3 illustrates the predicted accuracies after multiple runs of the pseudo labels for two different
neural network architectures

’ Iterations \ 1 hidden layer with 1000 neurons \ 2 hidden layers with 1500 neurons each ‘

1 56.04 47.86
3 55.48 47.98
6 55.26 48.16
10 55.00 48.10
17 56.08 48.74

Table 3: Pseudo Labels training after certain iterations of the algorithm

We find irregular patterns in the pseudo labels training, which might be due to the same weigh-
tage given to supervised and unsupervised data in the error function. The error function must be
dominated by the supervised training examples (since their labels are definitely correct), and we
need to monitor the weight coefficients given to the unsupervised data in a time dependent manner
as presented in the paper [3]. But, still the labels must improve with growing number of iterations and
we are looking into the reason of this irregular behaviour and resultant low accuracy.

The code for our implementations or supporting codes used from other repositories or sources is
available here [l

3.2 Future work

Semi-supervised learning is a highly interesting and important part of Machine Learning. Anno-
tation is expensive and more time taking than generating crude representations of data. Solving this
problem efficiently indicates that we can solve many real life problems with a small amount of super-
vised data.

Future work includes further delving into the pseudo labels approach and understanding its intricacies
to solve the issues in our present implementation. The sparse filtering method works well and we will
experiment with neural network architectures to improve the accuracy.

A careful hybrid of both these methods can incorporate the strengths of both models, and challenge
benchmark results. We also plan on applying this approach on data from cQA sites (where also we
have a lot of unannotated data) to solve the problem of good answer selection and ranking, which is a
project I have been working on for a long time.

References

[1] L. Romaszko, “A deep learning approach with an ensemble-based neural network classifier for black
box icml 2013 contest,” in Workshop on Challenges in Representation Learning, ICML, pp. 1-3,
2013.

[2] J. Xie, B. Xu, and Z. Chuang, “Horizontal and vertical ensemble with deep representation for
classification,” arXiv preprint arXiv:1806.2759, 2013.

[3] D.-H. Lee, “Pseudo-label: The simple and efficient semi-supervised learning method for deep neural
networks,” in Workshop on Challenges in Representation Learning, ICML, vol. 3, p. 2, 2013.

[4] J. Ngiam, Z. Chen, S. A. Bhaskar, P. W. Koh, and A. Y. Ng, “Sparse filtering,” in Advances in
neural information processing systems, pp. 1125-1133, 2011.

[5] Y. Grandvalet, Y. Bengio, et al., “Semi-supervised learning by entropy minimization.,” in NIPS,
vol. 17, pp. 529-536, 2004.

“https://github.com/TitasNandi/ICML-BlackBox-Challenge

https://github.com/TitasNandi/ICML-BlackBox-Challenge

	Abstract of the project
	Introduction
	Literature survey

	Resources
	Work done
	Baselines
	Benchmark Results
	Sparse Filtering
	Sparse Filtering + Supervised Training
	Plots
	Pseudo Labels

	Future work

