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Introduction
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ICML Black Box Challenge
g TARS

e Train a classifier on a dataset that is not human readable
o Without the knowledge of what the data consists of

@ Designed to reduce the usefulness of having a human researcher
working in loop with the training algorithm

e Organized by Yoshua Bengio, lan Goodfellow and Dumitru Erhan
as part of ICML 2013 - Challenges in Representation
Learning [1]
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Dataset

@ Problem of Semi-supervised Deep Learning
Dataset is divided as

o Supervised data - 1000 labeled examples with 1875 features classified
into 9 classes

o Unsupervised data - 135,735 unlabeled examples again with 1875
features

o Test data - 10,000 examples split into

@ 5000 public set examples
@ 5000 private set examples
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Baselines

Random Baseline - 11.1 %
Logistic Regression - 21.1 %
ZCA + 1 layer net - 41 %
ZCA + 3 layer net - 51.5 %
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Benchmark Results

First Position
Sparse Filtering + Feature Selection + SVM with linear kernel - 70.22 %

Second Position
Pseudo Labels + Denoising Autoencoder 4+ Dropout - 69.58 % [2]

Third Position
Horizontal and Vertical Ensemble for Classification - 69.14 %
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N
Pseudo Labels

o Generate pseudo labels for unlabeled data

Method
e run a classifier on labeled examples
o determine probable labels for the unlabeled data

o use both sets of data together for training

o recalculate pseudo labels every weight update

@ minimizes conditional entropy of class labels for unlabeled data
[3]

prefers low density separation between classes
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Figure: t-SNE 2-D embedding of the network output of MNIST test data
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-
Sparse Filtering Approach

e Unsupervised feature learning

@ A major performance constraint of sparse RBMs or autoencoders
is hyperparameter tuning

e Optimizes a simple cost function - sparsity of L2-normalized
features [4]

@ Learn sparsely activated features by

o Population Sparsity
o Lifetime Sparsity
o High dispersal
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-
Sparse Filtering + Supervised Training

e Break the large unsupervised data into 5000 example chunks
e Train a feedforward Sparse Filter on these chunks

o each chunk will be pulled in for training in data batches of
given count
o produce 10 feature sets having revised weights

o Picked out the top performing 120 features out of 1875 initially
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Implementation

e Find the revised representation for the training and test data

e Train a feedforward Neural Network on the supervised data
using these revised weights

e Experiments with neural net architecture
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Architectural experiments

Num | N L Act D Opt Epoch | Batch | Acc
Size

Best | 1500 2 sigmoid | 0.4 | adam | 200 128 64.74
1 1000 1 relu 0.4 | adam 20 128 60.12
2 200 2 sigmoid | 0.4 | adam 20 128 51.22
3 1000 2 sigmoid | 0.4 | adam 100 128 64.02
4 1000 3 sigmoid | 0.4 | adam 100 128 63.86
5 1000 2 sigmoid | 0.4 | adam 1000 128 63.80
6 1500 2 sigmoid | 0.5 | adam 200 128 64.50
7 2000 2 sigmoid | 0.4 | adam 200 128 64.66
8 1500 2 sigmoid | 0.3 | adam 200 128 64.66
9 1500 2 sigmoid | 0.4 | adam 200 256 64.42
10 1500 2 sigmoid | 0.4 | sgd 200 128 39.50
11 1500 2 relu 0.4 | adam 200 128 61.72

Table: Neural Network Experiments on sparsed features
(N = neurons, L = layers, Act = activation, D = dropout, Opt = Optimizer)
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Computation of Pseudo Labels

e Train a feedforward neural net on the supervised examples
e Find probable labels of the unsupervised data
e Retrain the neural network with the combined data

At this point, the network might not have learnt the pseudo
labels properly or might be overfitted

e Retrain the network until convergence (till there are no
significant changes in predicted labels)
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N
Pseudo Labels Method: Results

| Iterations | 1 hidden + 1000 neurons | 2 hidden + 1500 neurons each |

1 56.04 47.86
3 55.48 47.98
6 55.26 48.16
10 55.00 48.10

Table: Pseudo Labels training after specific iterations of the algorithm
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Irregularities

e Giving same weights to both supervised and unsupervised data

o Need to change weight coefficients of unsupervised data in a
time dependent manner

@ In some cases, maybe the system is actually moving away from
true labels

@ The code for both the implementations is available on
https://github.com/TitasNandi/ICML-BlackBox-
Challenge
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N
Future Work

Future Work
o Address irregularities in Pseudo Label training
@ The success of these methods is powerful

o Reduces annotation overload massively
o Black Box Learning in true sense

o Extend it to data from cQA sites
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