
IIT Patna 1

Introduction to Deep Learning

Arijit Mondal
Dept. of Computer Science & Engineering

Indian Institute of Technology Patna

arijit@iitp.ac.in



IIT Patna 2

Convolutional Neural Network
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Introduction

• Specialized neural network for processing data that has grid like topology

• Time series data (one dimensional)
• Image (two dimensional)

• Found to be reasonably suitable for certain class of problems eg. computer vision

• Instead of matrix multiplication, it uses convolution in at least one of the layers
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Convolution operation

• Consider the scenario of locating a spaceship with a laser sensor

• Suppose, the sensor is noisy

• Accurate estimation is not possible

• Weighted average of location can provide a good estimate s(t) =
∫
x(a)w(t − a)da

• x(a) — Location at age a by the sensor, t — current time, w — weight
• This is known as convolution
• Usually denoted as s(t) = (x ∗ w)(t)

• In neural network terminology x is input, w is kernel and output is referred as feature
map

• Discrete convolution can be represented as s(t) = (x ∗ w)(t) =
∞∑

a=∞

x(a)w(t − a)
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Convolution operation (contd)

• In neural network input is multidimensional and so is kernel

• These will be referred as tensor

• Two dimensional convolution can be defined as

s(i , j) = (I ∗K )(i , j) =
∑
m

∑
n

I (m, n)k(i−m, j−n) =
∑
m

∑
n

I (i−m, j−n)k(m, n)

• Commutative

• In many neural network, it implements as cross-correlation

s(i , j) = (I ∗ K )(i , j) =
∑
m

∑
n

I (i + m, j + n)k(m, n)

• No kernel flip is possible
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2D convolution

a b c d

e f g h

i j k l

aw+bx
+ey+fz +fy+gz

bw+cx cw+dx

+gy+hz

ew+fx

+iy+jz

fw+gx
+jy+kz

gw+hx

+ky+lz

w x

y z



IIT Patna 7

Advantages

• Convolution can exploit the following properties

• Sparse interaction (Also known as sparse connectivity or sparse weights)
• Parameter sharing
• Equivariant representation
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Sparse interaction

• Traditional neural network layers use matrix multiplication to describe how outputs
and inputs are related

• Convolution uses a smaller kernel

• Significant reduction in number of parameters
• Computing output require few comparison

• For example, if there is m inputs and n outputs, traditional neural network will require
m × n parameters

• If each of the output is connected to at most k units, the number of parameters will
be k × n



x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

x3

h1 h2 h3 h4 h5

x3

h2 h3 h4

IIT Patna 9

Sparse connectivity
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Sparse connectivity
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Sparse connectivity
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Sparse connectivity
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Receptive field
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Receptive field
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Parameter sharing

• Same parameters are used for more than one function model

• In tradition neural network, weight is used only once

• Each member of kernel is used at every position of the inputs

• As k � m, the number of parameters will reduced significantly

• Also, require less memory



Image source: Deep Learning Book
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Edge detection
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Equivariance

• If the input changes, the output changes in the same

• Specifically, a function f (x) is equivariant to function g if f (g(x)) = g(f (x))

• Example, g is a linear translation
• Let B be a function giving image brightness at some integer coordinates and g be a

function mapping from one image to another image function such that I ′ = g(I ) with
I ′(x , y) = I (x − 1, y)

• There are cases sharing of parameters across the entire image is not a good idea
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Pooling

• Typical convolutional network has three stages

• Convolution — several convolution to produce linear activation
• Detector stage — linear activation runs through the non-linear unit such as ReLU
• Pooling — Output is updated with a summary of statistic of nearby inputs

• Maxpooling reports the maximum output within a rectangular neighbourhood
• Average of rectangular neighbourhood
• Weighted average using central pixel

• Pooling helps to make representation invariant to small translation

• Feature is more important than where it is present

• Pooling helps in case of variable size of inputs
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Typical CNN
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Invariance of maxpooling



Image source: Deep Learning Book
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Learned invariances
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Pooling with downsampling
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Strided convolution
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Strided convolution (contd)
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Zero padding
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Connections
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Local convolution
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Recurrent convolution network



Image source: https://worksheets.codalab.org
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AlexNet



Image source: http://joelouismarino.github.io
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GoogleNet
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