Introduction to Deep Learning

Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Optimization for Training Deep Models

Minimization of cost function

Approximate minimization

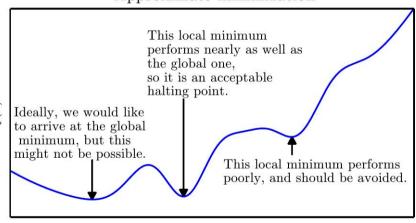


Image source: Deep Learning Book

T

Curvature

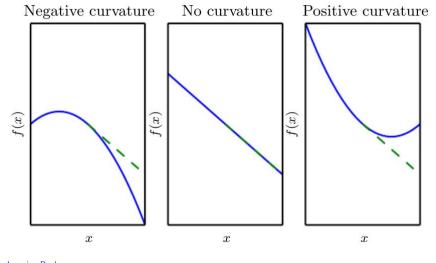


Image source: Deep Learning Book

Problem of optimization

- Differs from traditional pure optimization problem
- Performance of a task is optimized indirectly
- We optimize $J(\theta) = \mathbb{E}_{(x,y) \sim \hat{\rho}_{\text{data}}} L(f(x,\theta),y)$ where $\hat{\rho}$ is the empirical distribution
- We would like to optimize $J^*(\theta) = \mathbb{E}_{(x,y) \sim p_{\text{data}}} L(f(x,\theta),y)$ where p is the data generating distribution
- Also known as risk
- We hope minimizing **J** will minimize **j***

Empirical risk minimization

- Target is to reduce risk
- If the true distribution is known, risk minimization is an optimization problem
- When $p_{data}(x, y)$ is unknown, it becomes machine learning problem
- Simplest way to convert machine learning problem to optimization problem is to minimize expected cost of training set
- We minimize empirical risk

$$\mathbb{E}_{(x,y)\sim\hat{\rho}_{\mathsf{data}}}[L(f(x,\boldsymbol{\theta}),y)] = \frac{1}{m}\sum_{i}L(f(x^{(i)},\boldsymbol{\theta}),y^{(i)})$$

- We can hope empirical risk minimizes the risk as well
 - In many cases empirical risk minimization is not feasible
 - Empirical risk minimization is prone to overfitting
 - Gradient based solution approach may lead to problem with 0-1 loss cost function

Surrogate loss function

- Loss function may not be optimized efficiently
 - Exact minimization of 0-1 loss is typically intractable
- Surrogate loss function is used
 - Proxy function for the actual loss function
- Negative log likelihood of correct class used as surrogate function
- There are cases when surrogate loss function results in better learning
 0-1 loss of test set often continues to decrease for a long time after training set 0-1 loss
 - has reached to 0
- A training algorithm does not halt at local minima usually
- Tries to minimize surrogate loss function but halts when validation loss starts to increase
- Training function can halt when surrogate function has huge derivative

Batch

- Objective function usually decomposes as a sum over training example
- Typically in machine learning update of parameters is done based on an expected value of the cost function estimated using only a subset of of the terms of full cost function

Maximizing this sum is equivalent to maximizing the expectation over empirical dis-

- Maximum likelihood problem $\theta_{ML} = \arg\max_{\theta} \sum_{i=1} \log p_{\text{model}}(x^{(i)}, y^{(i)}, \theta)$
- tribution $J(\theta) = \mathbb{E}_{(x,y) \sim \hat{p}_{\text{data}}} \log p_{\text{model}}(x,y,\theta)$
- ullet Common gradient is given by $abla_{m{ heta}} = \mathbb{E}_{(x,y) \sim \hat{p}_{\mathsf{data}}}
 abla_{m{ heta}} \log p_{\mathsf{model}}(x,y,m{ heta})$
 - It becomes expensive as we need to compute for all examples
 - Random sample is chosen, then average of the same is taken
 - Standard error in estimating the variance is $\frac{\sigma}{\sqrt{n}}$ where σ is the true standard deviation

Standard error in estimating the variance is \(\frac{1}{\sqrt{n}} \) where \(\text{o} \) is the true standard.
 Redundancy in training examples is an issue

Batch

- Optimization algorithm that uses entire training set is called batch of deterministic gradient descent
- Optimization algorithm that uses single example at a time are known as stochastic gradient descent or online method

Minibatch

- Larger batch provides more accurate estimate of the gradient but with lesser than linear returns
- Multicore architecture are usually underutilized by small batches
- If all examples are to be processed parallely then the amount of memory scales with batch size
- Sometime, better run time is observed with specific size of the array
- Small batch can add regularization effect due to noise they add in learning process
- \bullet Methods that update the parameters based on ${\it g}$ only are usually robust and can handle small batch size ~ 100
- With Hessian matrix batch size becomes \sim 10,000 (Require to minimize $H^{-1}g$)
 SGD minimizes generalization error on minibatches drawn from a stream of data

Issues in optimization

- III conditioning
- Local minima
- Plateaus
- Saddle points
- Flat region
- Cliffs
- Exploding gradientsVanishing gradients
- Long term dependencies
- Long term dependencieInexact gradients

III conditioning

- III conditioning of Hessian matrix
 - Common problem in most of the numerical optimization
 - The ratio of smallest to largest eigen value determines the condition number
 - We have the following

$$f(x) = f(x^{(0)}) + (x - x^{(0)})^T \mathbf{g} + \frac{1}{2} (x - x^{(0)})^T \mathbf{H} (x - x^{(0)})$$
$$f(x - \epsilon \mathbf{g}) = f(x^{(0)}) - \epsilon \mathbf{g}^T \mathbf{g} + \frac{1}{2} \epsilon \mathbf{g}^T \mathbf{H} \epsilon \mathbf{g}$$

- It becomes a problem when $\frac{1}{2}\epsilon^2 \mathbf{g}^T \mathbf{H} \mathbf{g} \epsilon \mathbf{g}^T \mathbf{g} > 0$
- In many cases gradient norm does not shrink much during learning and $g^T Hg$ grows more rapidly
- Makes the learning process slow

Local minima

- For convex optimization problem local minima is often acceptable
- For nonconvex function like neural network many local minima are possible
 - This is not a major problem
- Neural network and any models with multiple equivalently parameterized latent variables results in local minima
 - This is due to model identifiability
 - Model is identifiable if sufficiently large training set can rule out all but one setting of model parameters
 - Model with latent variables are often not identifiable as exchanging of two variables does not change the model
 - m layers with n unit each can result in $(n!)^m$ arrangements
 - This non-identifiability is known as weight space symmetry
 - Neural network has other non-identifiability scenario
 ReLU or MaxOut weight is scaled by α and output is scaled by ½

Local minima

- Model identifiability issues mean that there can be uncountably infinite number of local minima
- Non-identifiability result is local minima and are equivalent to each other in cost function
- Local minima can be problematic if they have high cost compared to global minima

Other issues

- Saddle points
 - Gradient is 0 but some have higher and some have lower value around the point
 - Hessian matrix has both positive and negative eigen value
- In high dimension local minima are rare, saddle points are very common
 - For a function $f: \mathbb{R}^n \to \mathbb{R}$, the expected ratio of number of saddle points to local minima grows exponentially with n
 - Eigenvalue of Hessian matrix
- Cliffs uses gradient clipping
- Long term dependency mostly applicable for recurrent neural network
 - $\mathbf{w}^t = \mathbf{V} \operatorname{diag}(\lambda)^t \mathbf{V}^{-1}$
 - vanishing and exploding gradient
- Inexact gradients bias in estimation of gradient

Stochastic gradient descent

- Inputs Learning rate (ϵ_k) , weight parameters (θ)
- Algorithm for SGD:

while stopping criteria not met

Estimate of gradient
$$\hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \theta), y^{(i)})$$

Update parameters $\theta = \theta - \epsilon_k \hat{g}$ end while

IIT Patna

Sample a minibatch from training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}\$ with labels $\{v^{(i)}\}\$

Stochastic gradient descent

- Learning rate is a crucial parameter
- Learning rate ϵ_k is used in the kth iteration
- Gradient does not vanishes even when we reach minima as minibatch can introduce noise
- True gradient becomes small and then 0 when batch gradient descent is used
 Sufficient condition on learning rate for convergence of SGD

$$\bullet \sum_{\substack{k=1\\ \infty}}^{\infty} \epsilon_k = \infty$$

•
$$\sum_{k=1}^{\kappa-1} \epsilon_k^2 < \infty$$

• Common way is to decay the learning rate $\epsilon_k=(1-lpha)\epsilon_0+lpha\epsilon_ au$ with $lpha=rac{k}{ au}$

Stochastic gradient descent

- Choosing learning rate is an art than science!
 - Typically $\epsilon_{ au}$ is 1% of ϵ_{0}
- SGD usually performs well for most of the cases
- For large task set SGD may converge within the fixed tolerance of final error before it has processed all training examples

Momentum

- SGD is the most popular. However, learning may be slow sometime
- Idea is to accelerate learning especially in high curvature, small but consistent gradients
- Accumulates an exponential decaying moving average of past gradients and continue to move in that direction
- ullet Introduces a parameter $oldsymbol{v}$ that play the role of velocity
 - The velocity is set to an exponentially decaying average of negative gradients
- Update is given by

$$\mathbf{v} = \alpha \mathbf{v} - \epsilon \nabla_{\boldsymbol{\theta}} \left(\frac{1}{m} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}, \boldsymbol{\theta}), \mathbf{y}^{(i)}) \right)$$

 \bullet α — hyperparameter, denotes the decay rate

Momentum

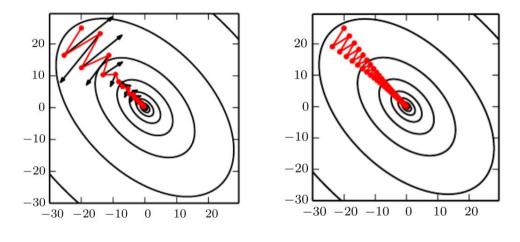


Image source: Deep Learning Book

IIT Patna

20

Stochastic gradient descent with momentum

• Inputs — Learning rate (ϵ) , weight parameters (θ) , momentum parameter (α) , initial velocity (\mathbf{v})

while stopping criteria not met

while stopping criteria not met

Sample a minibatch from training set
$$\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$$
 with labels $\{y^{(i)}\}$

Estimate of gradient: $\mathbf{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L(f(\mathbf{x}^{(i)}, \boldsymbol{\theta}), \mathbf{y}^{(i)})$ Update of velocity: $\mathbf{v} = \alpha \mathbf{v} - \epsilon \mathbf{g}$

Update parameters: $\theta = \theta + v$

IIT Patna 21

end while

• Algorithm:

Momentum

- The step size depends on how large and how aligned a sequence gradients are
- Largest when many successive gradients are in same direction
- If it observes g always, then it will accelerate in -g with terminal velocity $\frac{\epsilon|g|}{1-\epsilon}$
- ullet Typical values for lpha is 0.5, 0.9, 0.99. However this parameter can be adapted.

Nesternov momentum

- Inputs Learning rate (ϵ) , weight parameters (θ) , momentum parameter (α) , initial velocity (v)
- Algorithm:

Sample a minibatch from training set
$$\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$$
 with labels $\{y^{(i)}\}$

$$: \boldsymbol{\theta} = \boldsymbol{\theta} + \alpha \mathbf{v}$$

Interim update:
$$\tilde{\boldsymbol{\theta}} = \boldsymbol{\theta} + \alpha \boldsymbol{v}$$

Gradient at interim point:
$$g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \tilde{\theta}), y^{(i)})$$

Update of velocity:
$$\mathbf{v} = \alpha \mathbf{v} - \epsilon \mathbf{g}$$

Update parameters: $\mathbf{\theta} = \mathbf{\theta} + \mathbf{v}$

end while

Parameter initialization

- Training algorithms are iterative in nature
- Require to specify initial point
- Training deep model is difficult task and affected by initial choice
 - Convergence
 - Computation time
 - Numerical instability
- Need to break symmetry while initializing the parameters

Adaptive learning rate

- Learning rate can affect the performance of the model
- Cost may be sensitive in one direction and insensitive in the other directions
- If partial derivative of loss with respect to model remains the same sign then the learning rate should decrease
- Applicable for full batch optimization

AdaGrad

- Adapts the learning rate of all parameters by scaling them inversely proportional to the square root of the sum of all historical squared values of the gradient
 - Parameters with largest partial derivative of the loss will have rapid decrease in learning rate and vice-versa
 - Net effect is greater progress
- It performs well on some models

Steps for AdaGrad

• Inputs — Global learning rate (ϵ) , weight parameters (θ) , small constant (δ) , gradient accumulation (r)

Algorithm:

while stopping criteria not met

Update: $\Delta \theta = -\frac{\epsilon}{\delta + \sqrt{r}} \odot \mathbf{g}$

Apply update: $\theta = \theta + \Delta \theta$

Sample a minibatch from training set
$$\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$$
 with labels $\{y^{(i)}\}$

Accumulated squared gradient: $\mathbf{r} = \mathbf{r} + \mathbf{g} \odot \mathbf{g}$

Gradient:
$$g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \theta), y^{(i)})$$

end while

RMSProp

- Gradient is accumulated using an exponentially weighted moving average
 - Usually, AdaGrad converges rapidly in case of convex function
 - AdaGrad reduces the learning rate based on entire history
- RMSProp tries to discard history from extreme past
- This can be combined with momentum

Steps for RMSProp

- Inputs Global learning rate (ϵ) , weight parameters (θ) , small constant (δ) , gradient accumulation (r), decay rate (ρ)
- Algorithm:

while stopping criteria not met

Sample a minibatch from training set
$$\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$$
 with labels $\{y^{(i)}\}$

Gradient: $g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \theta), y^{(i)})$

Accumulated squared gradient:
$$\mathbf{r} = \rho \mathbf{r} + (1 - \rho) \mathbf{g} \odot \mathbf{g}$$

Update: $\Delta \theta = -\frac{\epsilon}{\sqrt{\delta + \mathbf{r}}} \odot \mathbf{g}$

Apply update:
$$\theta = \theta + \Delta \theta$$

end while

Steps for RMSProp with Nesternov

- Inputs Global learning rate (ϵ) , weight parameters (θ) , small constant (δ) , gradient accumulation (r), decay rate (ρ) , initial velocity (v), momentum coefficient (α)
- Algorithm:

Sample a minibatch from training set
$$\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$$
 with labels $\{y^{(i)}\}$
Interim update: $\tilde{\theta} = \theta + \alpha v$

Interim update:
$$\theta = \theta + \alpha V$$

Gradient: $g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(\mathbf{x}^{(i)}, \tilde{\theta}), y^{(i)})$

Accumulated squared gradient:
$$\mathbf{r} = \rho \mathbf{r} + (1 - \rho) \mathbf{g} \odot \mathbf{g}$$

Update of velocity:
$$\mathbf{v} = \alpha \mathbf{v} - \frac{\epsilon}{\sqrt{\mathbf{r}}} \odot \mathbf{g}$$

Apply update: $\mathbf{\theta} = \mathbf{\theta} + \mathbf{v}$

end while

Approximate 2nd order method

- Taking 2nd order term to train deep neural network
- The cost function at θ near the point θ_0 is given by

$$J(oldsymbol{ heta}) pprox J(oldsymbol{ heta}_0) + (oldsymbol{ heta} - oldsymbol{ heta}_0)^ op
abla_{oldsymbol{ heta}} J(oldsymbol{ heta}_0) + rac{1}{2} (oldsymbol{ heta} - oldsymbol{ heta}_0)^ op oldsymbol{H} (oldsymbol{ heta} - oldsymbol{ heta}_0)$$

- ullet Solution for critical point provides $m{ heta}^* = m{ heta}_0 m{H}^{-1}
 abla_{m{ heta}} J(m{ heta}_0)$
 - If the function is quadratic then it jumps to minimum
 - If the surface is not quadratic but **H** is positive definite then this approach is also applicable
- This approach is known as Newton's method

Steps for Newton's method

- Inputs Initial parameters (θ_0)
- Algorithm:

```
while stopping criteria not met
```

Sample a minibatch from training set
$$\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$$
 with labels $\{y^{(i)}\}$

$$\frac{1}{2}\sum_{i=1}^{m}\nabla_{\theta}I$$

Compute gradient:
$$g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \theta), y^{(i)})$$

$$\sum_{i=1}^{m} \nabla_{\theta} L(f($$

$$\sum_{i=1}^{m} \nabla_{\theta} L(t)$$

$$\nabla^2_{\theta} L(f(x))$$

Compute Hessian:
$$H = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta}^{2} L(f(\mathbf{x}^{(i)}, \theta), \mathbf{y}^{(i)})$$

$$(f(\mathbf{x}^{(i)}, \boldsymbol{\theta})$$

$$f(\mathbf{x}^{(i)}, \boldsymbol{\theta}), y$$

$$(0, \boldsymbol{\theta}), y$$

Compute inverse Hessian:
$$H^{-1}$$

Compute update: $\Delta \theta = -H^{-1}g$

end while

Batch normalization

- Reduces internal covariate shift
- Issues with deep neural network
 - Vanishing gradients
 - Use smaller learning rate
 - Use proper initialization
 - Use ReLU or MaxOut which does not saturate
- This approach provides inputs that has zero mean and unit variance to every layer of input in neural network

33

Batch normalization transformation

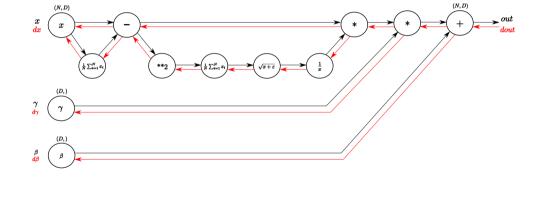
- Applying to activation x over a mini-batch
- Input values of x over a minibatch $\mathcal{B} = \{x_{1...m}\}$, parameters to be learned γ, β
- Output $\{y_i = \mathsf{BN}_{\gamma,\beta}(x_i)\}$ • Minibatch mean: $\mu_{\mathcal{B}} = \frac{1}{m} \sum_{i=1}^{m} x_i$
 - Minibatch variance: $\sigma_{\mathcal{B}}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i \mu_{\mathcal{B}})^2$
 - Normalize: $\hat{x}_i = \frac{x_i \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$
 - Scale and shift: $y_i = \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$

Reference: Batch normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, S Ioffe, C Szegedy, 2015

34

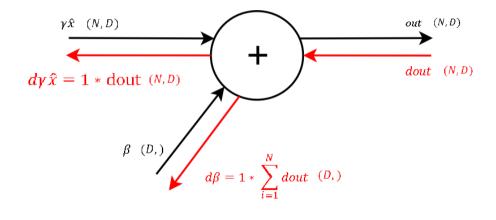
Computational graph for BN

Image source:https://kratzert.github.io



Back-propagation for BN (9)

Image source:https://kratzert.github.io



Back-propagation for BN (8)

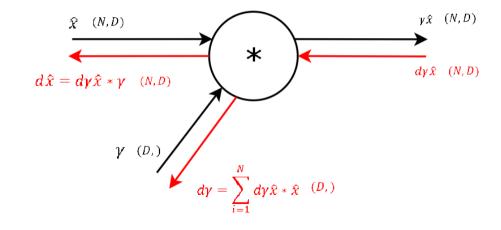


Image source:https://kratzert.github.io

Back-propagation for BN (7)

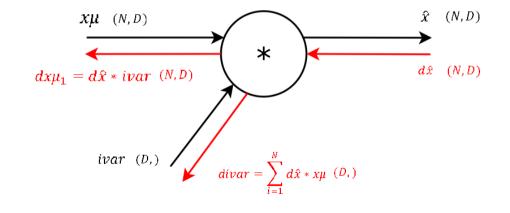
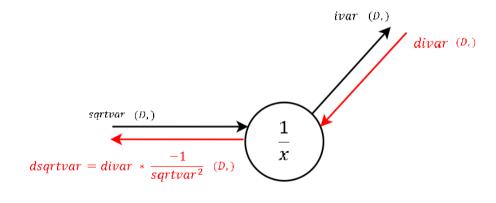


Image source:https://kratzert.github.io

Back-propagation for BN (6)

Image source:https://kratzert.github.io



Back-propagation for BN (5)

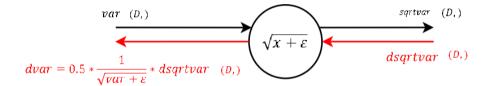


Image source:https://kratzert.github.io

Back-propagation for BN (4)

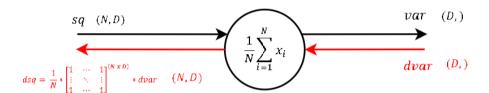


Image source:https://kratzert.github.io

Back-propagation for BN (3)

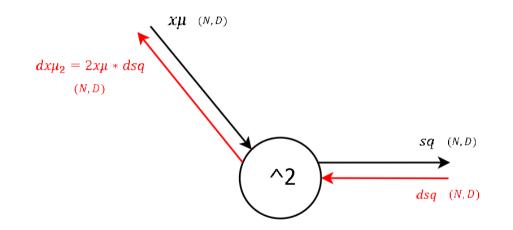


Image source:https://kratzert.github.io

IIT Patna

Back-propagation for BN (2)

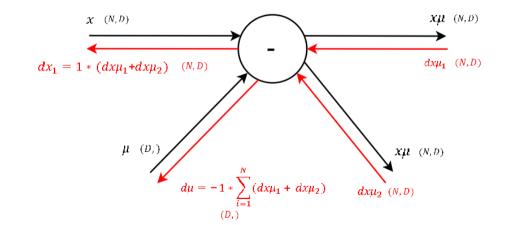


Image source:https://kratzert.github.io

Back-propagation for BN (1)

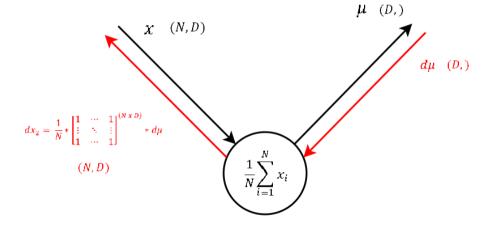


Image source:https://kratzert.github.io

Back-propagation for BN (0)

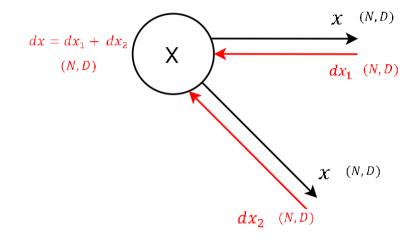


Image source:https://kratzert.github.io

Training & inference using batch-normalization

- Input Network N with trainable parameters θ , subset of activations $\{x^{(k)}\}_{k=1}^K$
- Output Batch-normalized network for inference N^{inf}_{BN}
 Steps:
 - Training BN network: Ntr BN = N
 - for $k=1,\ldots,K$
 - Add transformation $y^{(k)} = \mathsf{BN}_{\gamma^{(k)},\beta^{(k)}}(x^{(k)})$ to $N^{\mathsf{tr}}_{\mathsf{BN}} = N$
 - Modify each layer in $N_{BN}^{tr} = N$ with input $x^{(k)}$ to take $y^{(k)}$ instead
 - Train $N_{\text{BN}}^{\text{tr}}$ and optimize $\boldsymbol{\theta} \cup \{\gamma^{(k)}, \beta^{(k)}\}_{k=1}^K$ • $N_{\text{BN}}^{\text{inf}} = N_{\text{BN}}^{\text{tr}}$
 - for $k = 1, \ldots, K$
 - Process multiple training minibatches and determine $\mathbb{E}[x] = \mathbb{E}_{\mathcal{B}}[\mu_{\mathcal{B}}]$ and $V[x] = \frac{m}{m-1}\mathbb{E}_{\mathcal{B}}[\sigma_{\mathcal{B}}^2]$

• In $N_{\mathsf{BN}}^{\mathsf{inf}}$ replace the transform $y = \mathsf{BN}_{\gamma,\beta}(x)$ with $y = \frac{\gamma}{\sqrt{V[x] + \epsilon}} x + (\beta - \frac{\gamma \mathbb{E}[x]}{\sqrt{V[x] + \epsilon}})$