
IIT Patna 1

Introduction to Deep Learning

Arijit Mondal
Dept. of Computer Science & Engineering

Indian Institute of Technology Patna

arijit@iitp.ac.in

IIT Patna 2

Optimization for Training Deep Models

Image source: Deep Learning Book

IIT Patna 3

Minimization of cost function

Image source: Deep Learning Book

IIT Patna 4

Curvature

IIT Patna 5

Problem of optimization

• Differs from traditional pure optimization problem

• Performance of a task is optimized indirectly

• We optimize J(θ) = E(x ,y)∼p̂data
L(f (x ,θ), y) where p̂ is the empirical distribution

• We would like to optimize J∗(θ) = E(x ,y)∼pdata
L(f (x ,θ), y) where p is the data gen-

erating distribution

• Also known as risk

• We hope minimizing J will minimize j∗

IIT Patna 6

Empirical risk minimization

• Target is to reduce risk

• If the true distribution is known, risk minimization is an optimization problem

• When pdata(x , y) is unknown, it becomes machine learning problem

• Simplest way to convert machine learning problem to optimization problem is to min-
imize expected cost of training set

• We minimize empirical risk

E(x ,y)∼p̂data
[L(f (x ,θ), y)] =

1

m

∑
i

L(f (x (i),θ), y (i))

• We can hope empirical risk minimizes the risk as well

• In many cases empirical risk minimization is not feasible
• Empirical risk minimization is prone to overfitting
• Gradient based solution approach may lead to problem with 0-1 loss cost function

IIT Patna 7

Surrogate loss function

• Loss function may not be optimized efficiently

• Exact minimization of 0-1 loss is typically intractable

• Surrogate loss function is used

• Proxy function for the actual loss function
• Negative log likelihood of correct class used as surrogate function

• There are cases when surrogate loss function results in better learning

• 0-1 loss of test set often continues to decrease for a long time after training set 0-1 loss
has reached to 0

• A training algorithm does not halt at local minima usually

• Tries to minimize surrogate loss function but halts when validation loss starts to increase

• Training function can halt when surrogate function has huge derivative

IIT Patna 8

Batch

• Objective function usually decomposes as a sum over training example

• Typically in machine learning update of parameters is done based on an expected
value of the cost function estimated using only a subset of of the terms of full cost
function

• Maximum likelihood problem θML = arg max
θ

m∑
i=1

log pmodel(x
(i), y (i),θ)

• Maximizing this sum is equivalent to maximizing the expectation over empirical dis-
tribution J(θ) = E(x ,y)∼p̂data

log pmodel(x , y ,θ)

• Common gradient is given by ∇θ = E(x ,y)∼p̂data
∇θ log pmodel(x , y ,θ)

• It becomes expensive as we need to compute for all examples
• Random sample is chosen, then average of the same is taken
• Standard error in estimating the variance is σ√

n
where σ is the true standard deviation

• Redundancy in training examples is an issue

IIT Patna 9

Batch

• Optimization algorithm that uses entire training set is called batch of deterministic
gradient descent

• Optimization algorithm that uses single example at a time are known as stochastic
gradient descent or online method

IIT Patna 10

Minibatch

• Larger batch provides more accurate estimate of the gradient but with lesser than
linear returns

• Multicore architecture are usually underutilized by small batches

• If all examples are to be processed parallely then the amount of memory scales with
batch size

• Sometime, better run time is observed with specific size of the array

• Small batch can add regularization effect due to noise they add in learning process

• Methods that update the parameters based on g only are usually robust and can
handle small batch size ∼ 100

• With Hessian matrix batch size becomes ∼ 10,000 (Require to minimize H−1g)

• SGD minimizes generalization error on minibatches drawn from a stream of data

IIT Patna 11

Issues in optimization

• Ill conditioning

• Local minima

• Plateaus

• Saddle points

• Flat region

• Cliffs

• Exploding gradients

• Vanishing gradients

• Long term dependencies

• Inexact gradients

IIT Patna 12

Ill conditioning

• Ill conditioning of Hessian matrix

• Common problem in most of the numerical optimization
• The ratio of smallest to largest eigen value determines the condition number
• We have the following

f (x) = f (x (0)) + (x − x (0))Tg +
1

2
(x − x (0))TH(x − x (0))

f (x − εg) = f (x (0))− εgTg +
1

2
εgTHεg

• It becomes a problem when 1
2ε

2gTHg − εgTg > 0
• In many cases gradient norm does not shrink much during learning and gTHg grows

more rapidly
• Makes the learning process slow

IIT Patna 13

Local minima

• For convex optimization problem local minima is often acceptable

• For nonconvex function like neural network many local minima are possible

• This is not a major problem

• Neural network and any models with multiple equivalently parameterized latent vari-
ables results in local minima

• This is due to model identifiability
• Model is identifiable if sufficiently large training set can rule out all but one setting of

model parameters
• Model with latent variables are often not identifiable as exchanging of two variables does

not change the model

• m layers with n unit each can result in (n!)m arrangements
• This non-identifiability is known as weight space symmetry

• Neural network has other non-identifiability scenario

• ReLU or MaxOut — weight is scaled by α and output is scaled by 1
α

IIT Patna 14

Local minima

• Model identifiability issues mean that there can be uncountably infinite number of
local minima

• Non-identifiability result is local minima and are equivalent to each other in cost
function

• Local minima can be problematic if they have high cost compared to global minima

IIT Patna 15

Other issues

• Saddle points

• Gradient is 0 but some have higher and some have lower value around the point
• Hessian matrix has both positive and negative eigen value

• In high dimension local minima are rare, saddle points are very common
• For a function f : Rn → R, the expected ratio of number of saddle points to local

minima grows exponentially with n

• Eigenvalue of Hessian matrix

• Cliffs - uses gradient clipping

• Long term dependency — mostly applicable for recurrent neural network

• w t = V diag(λ)tV−1

• vanishing and exploding gradient

• Inexact gradients — bias in estimation of gradient

IIT Patna 16

Stochastic gradient descent

• Inputs — Learning rate (εk), weight parameters (θ)

• Algorithm for SGD:

while stopping criteria not met

Sample a minibatch from training set {x (1), x (2), . . . , x (m)} with labels {y (i)}

Estimate of gradient ĝ =
1

m

m∑
i=1

∇θL(f (x (i),θ), y (i))

Update parameters θ = θ − εk ĝ
end while

IIT Patna 17

Stochastic gradient descent

• Learning rate is a crucial parameter

• Learning rate εk is used in the kth iteration

• Gradient does not vanishes even when we reach minima as minibatch can introduce
noise

• True gradient becomes small and then 0 when batch gradient descent is used

• Sufficient condition on learning rate for convergence of SGD

•
∞∑
k=1

εk =∞

•
∞∑
k=1

ε2
k <∞

• Common way is to decay the learning rate εk = (1− α)ε0 + αετ with α = k
τ

IIT Patna 18

Stochastic gradient descent

• Choosing learning rate is an art than science!

• Typically ετ is 1% of ε0

• SGD usually performs well for most of the cases

• For large task set SGD may converge within the fixed tolerance of final error before
it has processed all training examples

IIT Patna 19

Momentum

• SGD is the most popular. However, learning may be slow sometime

• Idea is to accelerate learning especially in high curvature, small but consistent gradients

• Accumulates an exponential decaying moving average of past gradients and continue
to move in that direction

• Introduces a parameter v that play the role of velocity

• The velocity is set to an exponentially decaying average of negative gradients

• Update is given by

v = αv − ε∇θ

(
1

m

m∑
i=1

L(f (x (i),θ), y (i))

)

• α — hyperparameter, denotes the decay rate

Image source: Deep Learning Book

IIT Patna 20

Momentum

IIT Patna 21

Stochastic gradient descent with momentum

• Inputs — Learning rate (ε), weight parameters (θ), momentum parameter (α), initial
velocity (v)

• Algorithm:

while stopping criteria not met

Sample a minibatch from training set {x (1), x (2), . . . , x (m)} with labels {y (i)}

Estimate of gradient: g =
1

m

m∑
i=1

∇θL(f (x (i),θ), y (i))

Update of velocity: v = αv − εg
Update parameters: θ = θ + v

end while

IIT Patna 22

Momentum

• The step size depends on how large and how aligned a sequence gradients are

• Largest when many successive gradients are in same direction

• If it observes g always, then it will accelerate in −g with terminal velocity
ε|g |

1− α
• Typical values for α is 0.5, 0.9, 0.99. However this parameter can be adapted.

IIT Patna 23

Nesternov momentum

• Inputs — Learning rate (ε), weight parameters (θ), momentum parameter (α), initial
velocity (v)

• Algorithm:

while stopping criteria not met

Sample a minibatch from training set {x (1), x (2), . . . , x (m)} with labels {y (i)}
Interim update: θ̃ = θ + αv

Gradient at interim point: g =
1

m

m∑
i=1

∇θL(f (x (i), θ̃), y (i))

Update of velocity: v = αv − εg
Update parameters: θ = θ + v

end while

IIT Patna 24

Parameter initialization

• Training algorithms are iterative in nature

• Require to specify initial point

• Training deep model is difficult task and affected by initial choice

• Convergence
• Computation time
• Numerical instability

• Need to break symmetry while initializing the parameters

IIT Patna 25

Adaptive learning rate

• Learning rate can affect the performance of the model

• Cost may be sensitive in one direction and insensitive in the other directions

• If partial derivative of loss with respect to model remains the same sign then the
learning rate should decrease

• Applicable for full batch optimization

IIT Patna 26

AdaGrad

• Adapts the learning rate of all parameters by scaling them inversely proportional to
the square root of the sum of all historical squared values of the gradient

• Parameters with largest partial derivative of the loss will have rapid decrease in learning
rate and vice-versa

• Net effect is greater progress

• It performs well on some models

IIT Patna 27

Steps for AdaGrad

• Inputs — Global learning rate (ε), weight parameters (θ), small constant (δ), gradient
accumulation (r)

• Algorithm:

while stopping criteria not met

Sample a minibatch from training set {x (1), x (2), . . . , x (m)} with labels {y (i)}

Gradient: g =
1

m

m∑
i=1

∇θL(f (x (i),θ), y (i))

Accumulated squared gradient: r = r + g � g

Update: ∆θ = − ε

δ +
√
r
� g

Apply update: θ = θ + ∆θ

end while

IIT Patna 28

RMSProp

• Gradient is accumulated using an exponentially weighted moving average

• Usually, AdaGrad converges rapidly in case of convex function
• AdaGrad reduces the learning rate based on entire history

• RMSProp tries to discard history from extreme past

• This can be combined with momentum

IIT Patna 29

Steps for RMSProp

• Inputs — Global learning rate (ε), weight parameters (θ), small constant (δ), gradient
accumulation (r), decay rate (ρ)

• Algorithm:

while stopping criteria not met

Sample a minibatch from training set {x (1), x (2), . . . , x (m)} with labels {y (i)}

Gradient: g =
1

m

m∑
i=1

∇θL(f (x (i),θ), y (i))

Accumulated squared gradient: r = ρr + (1− ρ)g � g

Update: ∆θ = − ε√
δ + r

� g

Apply update: θ = θ + ∆θ

end while

IIT Patna 30

Steps for RMSProp with Nesternov

• Inputs — Global learning rate (ε), weight parameters (θ), small constant (δ), gradient
accumulation (r), decay rate (ρ), initial velocity (v), momentum coefficient (α)

• Algorithm:

while stopping criteria not met

Sample a minibatch from training set {x (1), x (2), . . . , x (m)} with labels {y (i)}
Interim update: θ̃ = θ + αv

Gradient: g =
1

m

m∑
i=1

∇θL(f (x (i), θ̃), y (i))

Accumulated squared gradient: r = ρr + (1− ρ)g � g

Update of velocity: v = αv − ε√
r
� g

Apply update: θ = θ + v

end while

IIT Patna 31

Approximate 2nd order method

• Taking 2nd order term to train deep neural network

• The cost function at θ near the point θ0 is given by

J(θ) ≈ J(θ0) + (θ − θ0)T∇θJ(θ0) +
1

2
(θ − θ0)TH(θ − θ0)

• Solution for critical point provides θ∗ = θ0 −H−1∇θJ(θ0)

• If the function is quadratic then it jumps to minimum
• If the surface is not quadratic but H is positive definite then this approach is also

applicable

• This approach is known as Newton’s method

IIT Patna 32

Steps for Newton’s method

• Inputs — Initial parameters (θ0)

• Algorithm:

while stopping criteria not met

Sample a minibatch from training set {x (1), x (2), . . . , x (m)} with labels {y (i)}
Compute gradient: g = 1

m

∑m
i=1∇θL(f (x (i),θ), y (i))

Compute Hessian: H = 1
m

∑m
i=1∇2

θL(f (x (i),θ), y (i))

Compute inverse Hessian: H−1

Compute update: ∆θ = −H−1g

Apply update: θ = θ + ∆θ

end while

IIT Patna 33

Batch normalization

• Reduces internal covariate shift

• Issues with deep neural network
• Vanishing gradients

• Use smaller learning rate
• Use proper initialization
• Use ReLU or MaxOut which does not saturate

• This approach provides inputs that has zero mean and unit variance to every layer of
input in neural network

Reference: Batch normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, S Ioffe, C Szegedy, 2015

IIT Patna 34

Batch normalization transformation

• Applying to activation x over a mini-batch

• Input — values of x over a minibatch B = {x1...m}, parameters to be learned — γ, β

• Output — {yi = BNγ,β(xi)}

• Minibatch mean: µB =
1

m

m∑
i=1

xi

• Minibatch variance: σ2
B =

1

m

m∑
i=1

(xi − µB)2

• Normalize: x̂i =
xi − µB√
σ2
B + ε

• Scale and shift: yi = γx̂i + β ≡ BNγ,β(xi)

Image source:https://kratzert.github.io

IIT Patna 35

Computational graph for BN

Image source:https://kratzert.github.io

IIT Patna 36

Back-propagation for BN (9)

Image source:https://kratzert.github.io

IIT Patna 37

Back-propagation for BN (8)

Image source:https://kratzert.github.io

IIT Patna 38

Back-propagation for BN (7)

Image source:https://kratzert.github.io

IIT Patna 39

Back-propagation for BN (6)

Image source:https://kratzert.github.io

IIT Patna 40

Back-propagation for BN (5)

Image source:https://kratzert.github.io

IIT Patna 41

Back-propagation for BN (4)

Image source:https://kratzert.github.io

IIT Patna 42

Back-propagation for BN (3)

Image source:https://kratzert.github.io

IIT Patna 43

Back-propagation for BN (2)

Image source:https://kratzert.github.io

IIT Patna 44

Back-propagation for BN (1)

Image source:https://kratzert.github.io

IIT Patna 45

Back-propagation for BN (0)

IIT Patna 46

Training & inference using batch-normalization

• Input — Network N with trainable parameters θ, subset of activations {x (k)}Kk=1

• Output — Batch-normalized network for inference N inf
BN

• Steps:

• Training BN network: Ntr
BN = N

• for k = 1, . . . ,K

• Add transformation y (k) = BNγ(k),β(k)(x (k)) to Ntr
BN = N

• Modify each layer in Ntr
BN = N with input x (k) to take y (k) instead

• Train Ntr
BN and optimize θ ∪ {γ(k), β(k)}Kk=1

• N inf
BN = Ntr

BN

• for k = 1, . . . ,K

• Process multiple training minibatches and determine E[x] = EB[µB] and V [x] =
m

m−1EB[σ2
B]

• In N inf
BN replace the transform y = BNγ,β(x) with y = γ√

V [x]+ε
x + (β − γE[x]√

V [x]+ε
)

