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Introduction

• In machine learning, target is to make an algorithm performs well not only on training
data but also on new data

• Many strategies exist to reduce test error at the cost of training error

• Any modification we make to a learning algorithm that is intended to reduce its
generalization error but not its training error

• Objectives

• To encode prior knowledge
• Constraints and penalties are designed to express generic preference for simpler model
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Regularization in DL

• In DL regularization works by trading increased bias for reduced variance

• Consider the following scenario
• Excluded the true data generating process

• Underfitting, inducing bias

• Matched the true data generating process

• Desired one

• Included the generating process but also many other generating process

• Overfitting, variance dominates

• Goal of regularizer is to take an model overfit zone to desired zone
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Norm penalties

• Most of the regularization approaches are based on limiting the capacity of the model

• Objective function becomes J̃(θ;X , y) = J(θ;X , y) + αΩ(θ)

• α — Hyperparameter denotes relative contribution
• Minimization of J̃ implies minimization of J
• Ω penalizes only the weight of affine transform

• Bias remain unregularized
• Regularizing bias may lead to underfitting
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L2 parameter regularization

• Weights are closer to origin as Ω(θ) = 1
2
‖w‖22

• Also known as ridge regression or Tikhonov regression

• Objective function J̃(w ;X , y) =
α

2
wTw + J(w ;X , y)

• Gradient ∇wJ(w ;X , y) = αw +∇wJ(w ;X , y)

• New weights

w = w − ε(αw +∇wJ(w ;X , y))
= w(1− εα)− ε∇wJ(w ;X , y)

• Assume quadratic nature of curve in the neighborhood of w ∗ = arg min
w

J(w)

• J(w) — unregularized cost
• Perfect scenario for linear regression with MSE
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Jacobian & Hessian

• Derivative of a function having single input and single output — dy
dx

• Derivative of function having vector input and vector output that is, f : Rm → Rn

• Jacobian J ∈ Rn×m of f defined as Ji ,j = ∂
∂xj

f (x)i

• Second derivative is also required sometime

• For example, f : Rn → R,
∂2

∂xi∂xj
f

• If second derivative is 0, then there is no curvature

• Hessian matrix H(f )(x)ij =
∂2

∂xi∂xj
f (x)

• Jacobian of gradient
• Symmetric
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Directional derivative

• The directional derivative of a scalar function f (x) = f (x1, x2, . . . , xn) along a vector
v = (v1, . . . , vn) is given by

∇v f (x) = lim
h→0

f (x + hv)− f (x)

h

• If f is differentiable at point x then

∇vf (x) = ∇f (x) · v
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Taylor series expansion

• A real valued function differentiable at point x0 can be expressed as

f (x) = f (x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)2 +

f (3)(x0)

3!
(x − x0)3 + · · · .

• When input is a vector

f (x) ≈ f (x (0)) + (x − x (0))Tg +
1

2
(x − x (0))TH(x − x (0))

• g — gradient at x (0), H — Hessian at x (0)

• If ε is the learning rate, then f (x (0) − εg) = f (x (0))− εgTg +
1

2
ε2gTHg
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Quadratic approximation

• Let w ∗ = arg minw J(w) optimum weights for minimal unregularized cost

• If the objective function is quadratic then Ĵ(θ) = J(w ∗) +
1

2
(w −w ∗)TH(w −w ∗)

• H is the Hessian matrix of J with respect to w at w∗

• No first order term as w∗ is minimum
• H is positive semidefinite

• Minimum of Ĵ occurs when ∇w Ĵ(w) = H(w −w ∗) = 0

• With weight decay we have

αw̃ + H(w̃ −w ∗) = 0
(H + αI )w̃ = Hw ∗

w̃ = (H + αI )−1Hw ∗
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Quadratic approximation (contd)

• As α→ 0, regularized solution ŵ approaches to w ∗

• As α→∞
• H is symmetric, therefore H = QΛQT . Now we have

w̃ = (QΛQ + αI )−1QΛQTw∗

=
[
Q(Λ + αI )QT

]−1
QΛQTw∗

= Q(Λ + αI )−1ΛQTw∗

• Weight decay rescale w∗ along the eigen vector of H

• Component of w∗ that is aligned to i-th eigen vector, will be rescaled by a factor of λi

λi+α
• λi � α — regularization effect is small
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L2 Norm
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Linear regression

• For linear regression cost function is (Xw − y)T (Xw − y)

• Using L2 regularization we have (Xw − y)T (Xw − y) + 1
2
αwTw

• Solution for normal equation w = (XTX )−1XTy

• Solution for with weight decay w = (XTX + αI )−1XTy
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L1 regularization

• Formally it is defined as Ω(θ) = ‖w‖1 =
∑
i

|wi |

• Regularized objective function will be J̃(w ;X , y) = α‖w‖1 + J(w ;X , y)

• The gradient will be ∇w J̃(w ;X , y) = αsign(w) +∇wJ(w ;X , y)

• Gradient does not scale linearly compared to L2 regularization

• Taylor series exapansion with approximation provides ∇w Ĵ(w) = H(w −w ∗)
• Simplification can be made by assuming H to be diagonal

• Apply PCA on the input dataset
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L1 regularization

• Quadratic approximation of L1 regularization objective function becomes
Ĵ(w ;X , y) = J((w ∗;X , y) +

∑
i

[
1
2
Hi ,i(wi −w ∗i )2 + α|wi |

]
• So, analytical in each dimension will be wi = sign(w ∗i ) max

{
|w ∗i | − α

Hi,i
, 0
}

• Consider the situation when w ∗i > 0

• If w∗i ≤
α
Hi,i

, optimal value for wi will be 0 under regularization

• If w∗i >
α
Hi,i

, wi moves towards 0 with a distance equal to α
Hi,i
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Constrained optimization

• Cost function regularized by norm penalty is given by

J̃(θ;X , y) = J(θ;X , y) + αΩ(θ)

• Let us assume f (x) needs to be optimized under a set of equality constraints g (i)(x) =
0 and inequality constraints h(j)(x) ≤ 0, then generalized Lagrangian is then defined
as

L(x ,λ,α) = f (x) +
∑
i

λig
(i)(x) +

∑
j

αig
(i)(x)

• If there exists a solution then

min
x

max
λ

max
α≥0

= L(x ,λ,α) = min
x

f (x)

• This can be solved by ∇x,λ,αL(x ,λ,α) = 0
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Constraint optimization (contd.)

• Suppose Ω(θ) < k needs to be satisfied. Then regularization equation becomes

L(θ, α;X , y) = J(θ;X , y) + α(Ω(θ)− k)

• Solution to the constrained problem

θ∗ = arg min
θ

max
α>0

L(θ, α)
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Dataset augmentation

• If data are limited, fake data can be added to training set

• Computer vision problem
• Speech recognition

• Easiest for classification problem

• Very effective in object recognition problem

• Translating
• Rotating
• Scaling

• Need to be careful for ’b’ and ’d’ or ’6’ and ’9’

• Injecting noise to input data can be viewed as data augmentation
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Multitask learning
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Early stopping
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Early stopping approach

• Intialize the parameters

• Run training algorithm for n steps and update i = i + n

• Compute error on the validation set (v ′)

• If v ′ is less than previous best, then update the same. Start step 2 again

• If v ′ is more than the previous best, then increament the count that stores the number
of such occurrences. If the count is less than a threshold go to step 2, otherwise exit.
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Early stopping (contd)

• Number of tarining step is a hyperparameter

• Most hyperparameters that control model capacity have U-shaped curve

• Additional cost for this approach is to store the parameters

• Requires a validation set
• It will have two passes

• First pass uses only training data for update of the parameters
• Second pass uses both training and validation data for update of the parameters

• Possible strategies

• Intialize the model again, retrain on all data, train for the same number of steps as obtained
by early stopping in pass 1

• Keep the parameters obtained from the first round, continue training using all data until the
validation loss is than the training loss at the early stopping point

• It reduces computational cost as it limits the number of iteration

• Provides regularization without any penalty
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Early stopping as regularizer

• Let us assume τ training iteration, ε learning rate

• ετ — measures effective capacity

• We have, Ĵ(θ) = J(w ∗) + 1
2
(w −w ∗)H(w −w ∗) and ∇w Ĵ(w) = H(w −w ∗)

• Assume w (0) = 0

• Approximate behavior of gradient descent provides

w (τ) = w (τ−1) − ε∇w Ĵ(w (τ−1))

w (τ) = w (τ−1) − εH(w (τ−1) −w ∗)
w (τ) −w ∗ = (I − εH)(w (τ−1) −w ∗)
w (τ) −w ∗ = (I − εQΛQT )(w (τ−1) −w ∗)

QT (w (τ) −w ∗) = (I − εΛ)QT (w (τ−1) −w ∗)
QTw (τ) = [I − (I − εΛ)τ ]QTw ∗
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Early stopping as regularizer (contd)

• Assuming w (0) = 0 and ε is small value such that |1− ελi | < 1

• From L2 regularization, we have

QT w̃ = (Λ + αI )−1ΛQTw ∗

QT w̃ = [I − (Λ + αI )−1α]QTw ∗

• Therefore we have, (I − εΛ)τ = (Λ + αI )−1α

• Hence, τ ≈ 1
εα
α ≈ 1

τε
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Bagging

• Also known as Bootstrap aggregating

• Reduces generalization error by combining several models

• Train multiple models then vote on output for the test example

• Also known as model averaging, ensemble method

• Suppose we have k regression model and each model makes an error εi such that
E(εi) = 0, E(ε2i ) = v , E(εiεj) = c

• Error made by average prediction
1

k

∑
i

εi

• Expected mean square error

E

(1

k

∑
i

εi

)2
 =

1

k2
E

[∑
i

(
ε2i +

∑
i 6=j

εiεj

)]
=

v

k
+

k − 1

k
c
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Dropout
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Dropout
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Adversarial training


