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Introduction

e In machine learning, target is to make an algorithm performs well not only on training
data but also on new data

e Many strategies exist to reduce test error at the cost of training error

e Any modification we make to a learning algorithm that is intended to reduce its
generalization error but not its training error

e Objectives
e To encode prior knowledge

o Constraints and penalties are designed to express generic preference for simpler model
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Regularization in DL

e In DL regularization works by trading increased bias for reduced variance

e Consider the following scenario
e Excluded the true data generating process
e Underfitting, inducing bias
e Matched the true data generating process
e Desired one
e Included the generating process but also many other generating process
e Overfitting, variance dominates

o Goal of regularizer is to take an model overfit zone to desired zone
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Norm penalties

e Most of the regularization approaches are based on limiting the capacity of the model

e Objective function becomes J(0; X, y) = J(6; X,y) + aQ(0)
e o — Hyperparameter denotes relative contribution
e Minimization of J implies minimization of J
e ) penalizes only the weight of affine transform
e Bias remain unregularized
e Regularizing bias may lead to underfitting
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> parameter regularization

e Weights are closer to origin as Q(0) = 1|w/||3

e Also known as ridge regression or Tikhonov regression
. . ~ «
e Objective function J(w; X.,y) = EWTW +J(w; X,y)
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> parameter regularization

e Weights are closer to origin as Q(0) = 1|w/||3

e Also known as ridge regression or Tikhonov regression

e Objective function J(w; X,y) = %WTW +J(w; X,y)

e Gradient V,J(w; X,y) = aw + V,J(w; X,y)
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> parameter regularization

Weights are closer to origin as Q(0) = 1|w||3

e Also known as ridge regression or Tikhonov regression

Objective function J(w; X,y) = %WTW +J(w; X,y)

Gradient V,J(w; X,y) = aw + V,J(w; X, y)
New weights

w = w—e¢elaw+V,J(w; X,y))
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> parameter regularization

e Weights are closer to origin as Q(0) = 1|w/||3

e Also known as ridge regression or Tikhonov regression

e Objective function J(w; X,y) = %WTW +J(w; X,y)

e Gradient V,J(w; X,y) = aw + V,J(w; X,y)
e New weights
w = w—elaw +V,J(w; X,y))
= w(l—ea)—€eV,J(w; X,y)
e Assume quadratic nature of curve in the neighborhood of w* = arg mmi,n J(w)

e J(w) — unregularized cost
o Perfect scenario for linear regression with MSE
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Jacobian & Hessian

e Derivative of a function having single input and single output — %

e Derivative of function having vector input and vector output that is, f : R” — R”
e Jacobian J € R of f defined as J;j = a%jf(x),-

e Second derivative is also required sometime
2

aX,'an
e If second derivative is 0, then there is no curvature
2

0
0x;0x; f(x)

e For example, f : R" — R, f

e Hessian matrix H(f)(x); =
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Jacobian & Hessian

dy

dx
e Derivative of function having vector input and vector output that is, f : R” — R”

e Jacobian J € R of f defined as J;j = a%jf(x),-

e Derivative of a function having single input and single output —

e Second derivative is also required sometime
2

aX,'an
e If second derivative is 0, then there is no curvature

(92
0x;0x; f(x)

e For example, f : R" — R, f

e Hessian matrix H(f)(x); =

e Jacobian of gradient
e Symmetric
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Directional derivative

e The directional derivative of a scalar function f(x) = f(xy, xa,
v =(vq,...,V,) is given by

Y, £(x) = lim f(x + hv) — f(x)

h—0 h

e If f is differentiable at point x then

Vif(x) = VF(x)-v

..., X,) along a vector
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Taylor series expansion

e A real valued function differentiable at point xp can be expressed as

f'(x0) f"(xo)
1! 2!

2 f(3)(XO)
3!

f(x) = f(xo)+ (x —x0) + (x — x0)
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Taylor series expansion

e A real valued function differentiable at point xp can be expressed as

f'(x0) f"(xo)
1! 2!

f(3)(XO)

f(x) = Flx0) + N

(x — xo)2 +

(x —x0) +

e When input is a vector

1
f(x)~ f(x9) + (x = xOTg + §(X — xO)TH(x — x@)

o g — gradient at x(©), H — Hessian at x(©)
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Taylor series expansion

e A real valued function differentiable at point xp can be expressed as

f'(x0) f"(xo)
1! 2!

f(3)(XO)

f(x) = Flx0) + N

(x — xo)2 +

(x —x0) +

e When input is a vector

1
f(x)~ f(x9) + (x = xOTg + §(X — xO)TH(x — x@)
o g — gradient at x(©), H — Hessian at x(©)

1
o If ¢ is the learning rate, then f(x(©) —eg) = f(x0) —cgTg + §e2gTHg

IIT Patna

(X—X0)3+---




Quadratic approximation

e Let w* = argmin,, J(w) optimum weights for minimal unregularized cost

N 1
e If the objective function is quadratic then J(0) = J(w*) + E(W —w") TH(w —w*)

e H is the Hessian matrix of J with respect to w at w*

e No first order term as w™ is minimum

e H is positive semidefinite
e Minimum of J occurs when V,, J(w) = H(w — w*) = 0
e With weight decay we have

aw+ H(Ww —w*)=0

(H+ al)w = Hw*
w = (H + al) *Hw*
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Quadratic approximation (contd)

e As o — 0, regularized solution w approaches to w*
e As v — o0

e H is symmetric, therefore H = QAQT. Now we have

W = (QAQ+al)lQAQTw*
— [QA+al)QT] ' QAQTw
= QA +al)tAQTw*

e Weight decay rescale w* along the eigen vector of H

e Component of w* that is aligned to i-th eigen vector, will be rescaled by a factor of ﬁ
e )\; > a — regularization effect is small
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Linear regression

e For linear regression cost function is (Xw — y)"(Xw — y)
e Using L? regularization we have (Xw — y)" (Xw — y) + faw’w
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Linear regression
e For linear regression cost function is (Xw — y)"(Xw — y)

e Using L? regularization we have (Xw — y)" (Xw — y) + faw’w

e Solution for normal equation w = (X7 X)) !XTy
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Linear regression

For linear regression cost function is (Xw — y)"(Xw — y)

Using L? regularization we have (Xw — y)"(Xw — y) + Jaw"w
Solution for normal equation w = (X7 X)) !XTy

Solution for with weight decay w = (XX +al) 1 XTy
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[! regularization

e Formally it is defined as Q(0) = ||w||; = Z |w;|

i

e Regularized objective function will be J(w; X,y) = a|w|; + J(w; X, y)
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[! regularization

e Formally it is defined as Q(0) = ||w||; = Z |w;|

e Regularized objective function will be J(w; X, y) = a|lw||; + J(w; X, y)

e The gradient will be V,J(w; X.y) = asign(w) + V,J(w; X, y)

e Gradient does not scale linearly compared to L? regularization

e Taylor series exapansion with approximation provides V,,J(w) = H(w — w*)
e Simplification can be made by assuming H to be diagonal
e Apply PCA on the input dataset
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[! regularization

e Quadratic approximation of L' regularization objective
JwiX,y) = J(w* X,y) + 32; [GHii(wi — w)? + a|w]

e So, analytical in each dimension will be w; = sign(w;") max {]W,-*] — O}

function becomes

[0
e Consider the situation when w* > 0
o Ifw' < H‘l optimal value for w; will be 0 under regularization

o If w/ > ;7-, w; moves towards 0 with a distance equal to -
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Constrained optimization
e Cost function regularized by norm penalty is given by
J(0; X, y) = J(0; X, y) + aQ)(8)

e Let us assume f(x) needs to be optimized under a set of equality constraints g(x) =
0 and inequality constraints hU)(x) < 0, then generalized Lagrangian is then defined

as
L(x, X, ) +z)\g )+Z(Y;g(i)(x)
J

e |f there exists a solution then

min max max = L(x, A, &) = min f(x)
X A a>0 X

e This can be solved by Vi x ol(x,X,a) =0
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Constraint optimization (contd.)

e Suppose 2(0) < k needs to be satisfied. Then regularization equation becomes

L(6,0; X, y) = J(0; X, y) + a(Q6) — k)

e Solution to the constrained problem

0" = i L(o,
arg min max (0, )
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Dataset augmentation

e If data are limited, fake data can be added to training set
e Computer vision problem
e Speech recognition

e Easiest for classification problem

e Very effective in object recognition problem
e Translating

¢ Rotating
e Scaling

e Need to be careful for 'b’ and 'd’ or '6" and '9’

e Injecting noise to input data can be viewed as data augmentation
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Multitask learning

Image source: Deep Learning Book

h(shared
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Early stopping
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Early stopping approach

Intialize the parameters

Run training algorithm for n steps and update i =/ + n

Compute error on the validation set (V)

If v/ is less than previous best, then update the same. Start step 2 again

If v/ is more than the previous best, then increament the count that stores the number
of such occurrences. If the count is less than a threshold go to step 2, otherwise exit.
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Early stopping (contd)

e Number of tarining step is a hyperparameter

e Most hyperparameters that control model capacity have U-shaped curve
e Additional cost for this approach is to store the parameters
e Requires a validation set

e It will have two passes

e First pass uses only training data for update of the parameters
e Second pass uses both training and validation data for update of the parameters
e Possible strategies
e Intialize the model again, retrain on all data, train for the same number of steps as obtained
by early stopping in pass 1
e Keep the parameters obtained from the first round, continue training using all data until the
validation loss is than the training loss at the early stopping point

e It reduces computational cost as it limits the number of iteration
e Provides regularization without any penalty
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Early stopping as regularizer

e Let us assume 7 training iteration, ¢ learning rate
e ¢7 — measures effective capacity

e We have, J(0) = J(w*) + 2(w — w*)H(w — w*) and VeJ(w) = Hw — w*)
e Assume w(® =0

e Approximate behavior of gradient descent provides
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Early stopping as regularizer

e Let us assume 7 training iteration, ¢ learning rate
e ¢7 — measures effective capacity

e We have, J(0) = J(w*) + 2(w — w*)H(w — w*) and VeJ(w) = Hw — w*)
e Assume w(® =0

e Approximate behavior of gradient descent provides

w = wlD _ v, J(wlY)
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Early stopping as regularizer

e Let us assume 7 training iteration, ¢ learning rate
e ¢7 — measures effective capacity

We have, J(8) = J(w*) + 2(w — w*)H(w — w*) and VeJ(w) = Hw — w*)
Assume w(® =0

e Approximate behavior of gradient descent provides

w = Wl v, J(wY)
w = wl Y _cHwY — w)
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Early stopping as regularizer

e Let us assume 7 training iteration, ¢ learning rate
e ¢7 — measures effective capacity

e We have, J(0) = J(w*) + 2(w — w*)H(w — w*) and VeJ(w) = Hw — w*)
e Assume w(® =0

e Approximate behavior of gradient descent provides

= wl ™ — v, J(wb)
w = wl Y _cHwY — w)
w —w* = (I —eH)(wl D —wY)
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Early stopping as regularizer

e Let us assume 7 training iteration, ¢ learning rate
e ¢7 — measures effective capacity

e We have, J(0) = J(w*) + 2(w — w*)H(w — w*) and VeJ(w) = Hw — w*)
e Assume w(® =0

e Approximate behavior of gradient descent provides

w = wlD _ v, J(wlY)

w = wl Y _cHwY — w)
w —w* = (I —eH)(wl D —wY)
w —w* = (I —eQAQT) (W'Y —w¥)
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Early stopping as regularizer

e Let us assume 7 training iteration, ¢ learning rate

e ¢7 — measures effective capacity

e We have, J(0) = J(w*) + 2(w — w*)H(w — w*) and VeJ(w) = Hw — w*)

e Assume w(® =0

e Approximate behavior of gradient descent provides

w(™
e
w( — w

w™ — w
QT(W(T) o W*)

w( — v, J(wl )
wY — eH(w(Y — w¥)
(I —eH) (WY — w¥)

(I —eQAQT)(wl™Y — w)
(I —eA)QT(wl™Y — w)
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Early stopping as regularizer

e Let us assume 7 training iteration, ¢ learning rate

e ¢7 — measures effective capacity

e We have, J(0) = J(w*) + 2(w — w*)H(w — w*) and VeJ(w) = Hw — w*)

e Assume w(® =0

e Approximate behavior of gradient descent provides

w(™
e
w( — w
w( — w

QT(W(T) o W*)

QTW(T)

w( — v, J(wl )
wY — eH(w(Y — w¥)
(I —eH) (WY — w¥)

(I —eQAQT) (WY — w¥)
(I —eA)QT(wl™Y — w)
[I— (1 —eA))|QTw*
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Early stopping as regularizer (contd)

e Assuming w(® = 0 and ¢ is small value such that |1 —e);| < 1
e From [? regularization, we have

Q'w = (A—l—oél)*lAQTW*
Q'w = [I —(A4+al)t]QTw*

e Therefore we have, (I —eA)” = (A +al) o

e Hence, T~ L a~ 1
(6% TE
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Bagging

e Also known as Bootstrap aggregating

e Reduces generalization error by combining several models

e Train multiple models then vote on output for the test example
e Also known as model averaging, ensemble method

e Suppose we have k regression model and each model makes an error ¢; such that
E(e;) =0, E(¢2) = v, E(ej¢j) = ¢

1
e Error made by average prediction P Z €

e Expected mean square error

Z<6?+Z€;ej>] _Z+k;1C

i#i
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Dropout

Image source: Deep Learning Book
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Dropout

Image source: Deep Learning Book
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Adversarial training

Image source: Deep Learning Book
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