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Deep feedforward networks

e Also known as feedforward neural network or multilayer perceptron
e Goal of such network is to approximate some function f*

e For classifier, x is mapped to category y ie. y = f*(x)

e A feedforward network maps y = f(x;0) and learns 6 for which the result is the best
function approximation
e Information flows from input to intermediate to output
o No feedback, directed acyclic graph
e For general model, it can have feedback and known as recurrent neural network
e Typically it represents composition of functions
o Three functions f(1), (2 f3) are connected in chain
o Overall function realized is f(x) = f@®)(F)(F(1)(x)))
e The number of layers provides the depth of the model

e Goal of NN is not to accurately model brain!
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Multilayer neural network




Issues with linear FFN

e Fit well for linear and logistic regression
e Convex optimization technique may be used
e Capacity of such function is limited

e Model cannot understand interaction between any two variables
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e Transform x (input) into ¢(x) where ¢ is nonlinear transformation
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Overcome issues of linear FFN

e Transform x (input) into ¢(x) where ¢ is nonlinear transformation
e How to choose ¢?
e Use a very generic ¢ of high dimension

e Enough capacity but may result in poor generalization
e Very generic feature mapping usually based on principle of local smoothness
e Do not encode enough prior information

e Manually design ¢
e Require domain knowledge

o Strategy of deep learning is to learn ¢
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Goal of deep learning

e We have a model y = f(x;0,w) = ¢(x;0)"w

We use 0 to learn ¢
e w and ¢ determines the output. ¢ defines the hidden layer
e It looses the convexity of the training problem but benefits a lot
e Representation is parameterized as ¢(x, 0)
e 0 can be determined by solving optimization problem
e Advantages

e ¢ can be very generic
e Human practitioner can encode their knowledge to designing ¢(x; 6)
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Design issues of feedforward network

Choice of optimizer
Cost function

The form of output unit
Choice of activation function

Design of architecture - number of layers, number of units in each layer

Computation of gradients
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Example
e Let us choose XOR function

e Target function is y = f*(x) and our model provides y = f(x; 0)
e Learning algorithm will choose the parameters 6 to make f close to f*
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Example

e Let us choose XOR function

e Target function is y = f*(x) and our model provides y = f(x; 0)

e Learning algorithm will choose the parameters 6 to make f close to f*

e Target is to fit output for X = {[0,0]",[0,1]",[1,0]",[1,1]"}

e This can be treated as regression problem and MSE error can be chosen as loss

function

e MSE loss function J(6) = iZ(f*(X) — f(x:;0))?

xeX
e \We need to choose f(x; 8) where 8 depends on w and b

e Let us consider a linear model f(x; w,b) = x"w + b
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Example

Let us choose XOR function

Target function is y = f*(x) and our model provides y = f(x; 0)
Learning algorithm will choose the parameters 6 to make f close to f*
Target is to fit output for X = {[0,0]",[0,1]",[1,0]7,[1,1]"}

This can be treated as regression problem and MSE error can be chosen as loss
function

: 1 . Y
e MSE loss function J(6) = ; g((f (x) — f(x;0))
e \We need to choose f(x; 8) where 8 depends on w and b

Let us consider a linear model f(x; w,b) = x"w + b
e Solving these, we get w =0 and b = 3
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Simple feedforward network with hidden layer

e Let us assume that the hidden unit h computes
fFO(x; W, c)

ONENO
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Simple feedforward network with hidden layer

e Let us assume that the hidden unit h computes
fO(x; W, c)

e In the next layer y = f)(h; w, b) is computed @ @
e Complete model f(x; W, c,w,b) = f(f)(x))

w
e Suppose f()(x) = W Tx and f2(h) = h" w then f(x) =
w WTx
e We need to have nonlinear function to describe the fea-
tures w

e Usually NN have affine transformation of learned param-
eters followed by nonlinear activation function @ @

o Let ususe h=g(W'x+c)
e Let us use RelLU as activation function g(z) = max{0, z}
e g is chosen element wise h; = g(x"W.; + ¢;)
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Simple feedforward network with hidden layer

e Complete network is f(x; W, c,w,b) = w max{0, W x + ¢} + b
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e A solution for XOR problem can be as follows

[ e e
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e A solution for XOR problem can be as follows

e e[ e

e Now we have

o X
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Simple feedforward network with hidden layer

e Complete network is f(x; W, c,w,b) = w’ max{0, W x + c} + b
e A solution for XOR problem can be as follows

e e [

e Now we have

« X = L XW =

= = O O
N R PR O

0
1
1
2

= O = O
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Simple feedforward network with hidden layer

e Complete network is f(x; W, c,w,b) = w’ max{0, W x + c} + b
e A solution for XOR problem can be as follows

e e [

e Now we have

e X = , XW = , add bias ¢

= O = O
= = O O
N R PR O
N = = O
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Simple feedforward network with hidden layer

e Complete network is f(x; W, c,w,b) = w’ max{0, W x + c} + b
e A solution for XOR problem can be as follows

e e[ e

e Now we have

, add bias ¢ , apply h

N R PR O
N = = O
N R R O
= O O
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Simple feedforward network with hidden layer

e Complete network is f(x; W, c,w,b) = w’ max{0, W x + c} + b
e A solution for XOR problem can be as follows

e e[ e

e Now we have

00 0 0 0 -1 0
10 11 : 1 0 1
o« X = 01 XW = 11 add bias ¢ L apply h 1
11 2 2 2 1 2

= O O O
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Simple feedforward network with hidden layer

e Complete network is f(x; W, c,w,b) = w’ max{0, W x + c} + b
e A solution for XOR problem can be as follows

e e[ e

e Now we have

00 0 0 0 -1 0
10 11 : 1 0 1
o« X = 01 XW = 11 add bias ¢ L apply h 1
11 2 2 2 1 2

with w

= O O O

, multiply
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Simple feedforward network with hidden layer

e Complete network is f(x; W, c,w,b) = w’ max{0, W x + c} + b
e A solution for XOR problem can be as follows

e e[ e

e Now we have

00 00 0 -1 00
10 11 } 1 0 10 )
e X = 0o 1| XW = 11 add bias ¢ 1o | apply h 1o | multiply
11 2 2 2 1 2 1
0
with w 1
0
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Gradient based learning

e Similar to machine learning tasks, gradient descent based learning is used
e Need to specify optimization procedure, cost function and model family

e For NN, model is nonlinear and function becomes nonconvex
e Usually trained by iterative, gradient based optimizer

e Solved by using gradient descent or stochastic gradient descent (SGD)
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Gradient descent

Suppose we have a function y = f(x), derivative (slope at point x) of it is f'(x) = %

A small change in the input can cause output to move to a value given by f(x + ¢) ~
f(x) + ef’(x)

We need to take a jump so that y reduces (assuming minimization problem)

We can say that f(x — esign(f’(x))) is less than f(x)

For multiple inputs partial derivatives are used ie. O%f(x)

Gradient vector is represented as V,f(x)

Gradient descent proposes a new point as x’ = x — eV ,f(x) where ¢ is the learning
rate
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Stochastic gradient descent
e Large training set are necessary for good generalization

1 . .
e Typical cost function used for optimization is J(6) = — Z L(x,yD 0)
m <

1 . .
e Gradient descent requires computing of VyJ(0) = = E Vol (x, y) )
i=1
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Stochastic gradient descent

e Large training set are necessary for good generalization

1 . .
Typical cost function used for optimization is J(0) = — Z L(x,yD 0)
m <

1 . .
Gradient descent requires computing of VyJ(0) = — E Vol(x, y) )
m
i=1

o Computation cost is O(m)

For SGD, gradient is an expectation estimated from a small sample known as mini-
batch (B = {x®) ... x(m)})

1 & .
Estimated gradient is g = — >~ VyL(x1,y1, )
m
i=1

e New point will be 8 =0 — ¢g
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Cost function

e Similar to other parametric model like linear models
e Parametric model defines distribution p(y|x; 0)

e Principle of maximum likelihood is used (cross entropy between training data and
model prediction)

e Instead of predicting the whole distribution of y, some statistic of y conditioned on
x is predicted

e |t can also contain regularization term

IIT Patna
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Maximum likelihood estimation

e Consider a set of m examples X = {x(}) ... x(M} drawn independently from the
true but unknown data generating distribution pyac.(x)

e Let proge(x; 0) be a parametric family of probability distribution
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Maximum likelihood estimation

e Consider a set of m examples X = {x(}) ... x(M} drawn independently from the
true but unknown data generating distribution pyac.(x)

e Let proge(x; 0) be a parametric family of probability distribution

e Maximum likelihood estimator for 0 is defined as

OML = arg meax mede’(X; 0) = arg maax ]illz pmode/(x(i); 0)

e It can be written as @y, = arg meaxz log pmodel(x(i); 0)
i=1
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Maximum likelihood estimation

e Consider a set of m examples X = {x(}) ... x(M} drawn independently from the
true but unknown data generating distribution pyac.(x)

Let Pmoder(x; @) be a parametric family of probability distribution
Maximum likelihood estimator for @ is defined as

OML = arg meax mede’(X; 0) = arg maax ]illz pmode/(x(i); 0)

It can be written as 0y, = arg meaxz log pmodel(x(i); 0)
i=1
By dividing m we get 0, = arg m§XEX~ﬁdata l0g Pmodel(X; 6)
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Maximum likelihood estimation

e Consider a set of m examples X = {x(}) ... x(M} drawn independently from the
true but unknown data generating distribution pyac.(x)

Let Pmoder(x; @) be a parametric family of probability distribution
Maximum likelihood estimator for @ is defined as

OML = arg mglx mede’(X; 0) - arg maax ]illz pmode/(x(i); 0)

It can be written as 0y, = arg meaxz log pmodel(x(i); 0)
i=1
By dividing m we get 0, = arg m@axIEXN‘;d‘_“a l0g Pmodel(X; 6)

We need to minimize — arg max Ex~py, 108 Pmoder(X; 6)
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Conditional log-likelihood

e In most of the supervised learning we estimate P(y|x; 0)
e If X be the all inputs and Y be observed targets then conditional maximum likelihood
estimator is 6y, = arg max P(Y|X;0)

e |If the examples are assumed to be i.i.d then we can say

= log P(y()|x(-
v argmgxz og P(y""[x'"; 6)

i=1

IIT Patna

17




Linear regression as maximum likelihood

e Instead of producing single prediction y for a given x, we assume the model produces
conditional distribution p(y|x)

e For infinitely large training set, we can observe multiple examples having the same x
but different values of y

e Goal is to fit the distribution p(y|x)
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Linear regression as maximum likelihood

e Instead of producing single prediction y for a given x, we assume the model produces
conditional distribution p(y|x)

For infinitely large training set, we can observe multiple examples having the same x
but different values of y

Goal is to fit the distribution p(y|x)
Let us assume, p(y|x) = N (y; y(x; w),c?)

Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

> logp(y|x; 6)
i=1
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Linear regression as maximum likelihood

e Instead of producing single prediction y for a given x, we assume the model produces
conditional distribution p(y|x)

For infinitely large training set, we can observe multiple examples having the same x
but different values of y

Goal is to fit the distribution p(y|x)
Let us assume, p(y|x) = N (y; y(x; w),c?)

Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

= m 66) _ )12
3 (). g) — _m -y I = y?)?
2 log p(y""’|x"";0) = —mlog o 5 log(27) 2 >
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Learning conditional distributions with max likelihood

e Usually neural networks are trained using maximum likelihood. Therefore the cost
function is negative log-likelihood. Also known as cross entropy between training
data and model distribution

e Cost function J(60) = —Ex y.p,.. 108 Pmodel (¥ |X)

e Uniform across different models

e Gradient of cost function is very much crucial

e Large and predictable gradient can serve good guide for learning process
e Function that saturates will have small gradient

e Activation function usually produces values in a bounded zone (saturates)
e Negative log-likelihood can overcome some of the problems

e Output unit having exp function can saturate for high negative value
e Log-likelihood cost function undoes the exp of some output functions
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Learning conditional statistics

e Instead of learning the whole distribution p(y|x; @), we want to learn one conditional
statistics of y given x

e For a predicting function f(x; @), we would like to predict the mean of y
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Learning conditional statistics

e Instead of learning the whole distribution p(y|x; @), we want to learn one conditional
statistics of y given x

e For a predicting function f(x;8), we would like to predict the mean of y
e Neural network can represent any function f from a very wide range of functions
e Range of function is limited by features like continuty, boundedness, etc.
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Learning conditional statistics

e Instead of learning the whole distribution p(y|x; @), we want to learn one conditional
statistics of y given x

e For a predicting function f(x;8), we would like to predict the mean of y
e Neural network can represent any function f from a very wide range of functions
e Range of function is limited by features like continuty, boundedness, etc.
e Cost function becomes functional rather than a function

e Need to solve the optimization problem f* = arg mfin Ex.veppslly — F(X)?
e Using calculus of variation, it gives f*(x) = Eyp,.(yx) V]

e Mean of y for each value of x
e Using a different cost function * = arg mfin Ex.yepg.lly — F(x)]1

e Median of y for each value of x
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Calculus of variation

X2
e Let us consider functional J[y]| = / L(x,y(x),y'(x)) dx
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X2
e Let us consider functional J[y]| = / L(x,y(x),y'(x)) dx

e Let J[y] has local minima at f. Therefore, we can say J[f] < J[f + en]
e 7 is an arbitrary function of x such that 7(x;) = 7(x2) = 0 and differentiable
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Calculus of variation

X2
e Let us consider functional J[y]| = / L(x,y(x),y'(x)) dx

e Let J[y] has local minima at f. Therefore, we can say J[f] < J[f + en]
e 7 is an arbitrary function of x such that 7(x;) = 7(x2) = 0 and differentiable

_do /‘X2 dL
N de

e=0

e Let us assume ®(c) = J[f +en]. Therefore, ®'(0) = A
£

e=0

dx =0
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Calculus of variation

x2
Let us consider functional J[y] = / L(x,y(x),y'(x)) dx

Let J[y] has local minima at f. Therefore, we can say J[f| < J[f + 7]
e 7 is an arbitrary function of x such that 7(x;) = 7(x2) = 0 and differentiable

Cdo| /'X2 dL
e=0 X1 de

Let us assume ®(¢) = J[f +en]. Therefore, ¥'(0) = o
£

e=0

dL  OLdy 0L dy
e Now we can say, s = @?EJF OT/’die

dx =0
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Calculus of variation

X2
Let us consider functional J[y] = / L(x,y(x),y'(x)) dx

Let J[y] has local minima at f. Therefore, we can say J[f| < J[f + 7]

e 7 is an arbitrary function of x such that 7(x;) = 7(x2) = 0 and differentiable

| &
N de

do
Let us assume ®(c) = J[f +en]. Therefore, ¢'(0) = o

e=0

Now we can sa db _ oL dy + OL dy’
[ ] W Wi _— = —— -
Y e dy de 0y’ de
dL oL
As we have y = f +en and y' = f' + 1/, therefore, — = —

de 8yn+

oL
({)y’77

/

e=0

dx =0
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Calculus of variation

e Now we have

[TE w = [ (G ) ¢
Lodel T \afT T arT )
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Calculus of variation

e Now we have

/X2 dL 4 /X2 oL
N X — N
o de|_o o \Of

)

-/

ot 4ok
of 1~ Tdxof

)

oL
d =
X + Qf’n

X2

X1
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Calculus of variation

e Now we have

/XZdL dx / oL ot d/x2 oL doby ot
el T \ar e ) = )\ Taxar ) T o

e Hence
[T g0ty
L \of T daxor ) T

X2

|
o
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Calculus of variation

e Now we have

/XZdL J / oL ot d/x2 oL doby ot
el T \ar e ) = )\ Taxar ) T o

e Hence
[T g0ty
L \of T daxor ) T

oL d oL

of  dxof

X2

|
o

e Euler-Lagrange equation

IIT Patna 22




Example

x2
e Let us consider distance between two points Aly] = / V14 [y/(x)]? dx

%, yi= f(Xl)a Y2 = f(Xz)
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Example
x2
e Let us consider distance between two points Aly] = / V14 [y/(x)]? dx

d
-y’(X)Zdjy(, n="Ff), y2="*f(e)

oL dot 0 where L = /14 [f'(x)]?

o We have, of —&%

23
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Example

x2
e Let us consider distance between two points Aly] = / V14 [y/(x)]? dx

e y'(x)=

dy

dx’

oL

e We have, —

of

vi="f(x), y2=f(x)

d oL

_—— = — / 2

T OF 0 where L 1+ [f'(x)]
d oL

e As f does not appear explicitly in L, hence —— =10
dx Of’
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Example

X2
e Let us consider distance between two points Aly] = / V14 [y/(x)]? dx

d
() =0 n=Fla), v =)
oL d oL B T
e We have, 9 df 0 where L = /1 + [f'(x)]
o d oL
e As f does not appear explicitly in L, hence —— =10
dx Of’
d f'(x)

e Now we have, — ——~-—— =
dx /1+[f'(x)]?
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Example

df

e Taking derivative we get — -
dx?

1

[VIETPeoR |

=0
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Example

e Therefore we have,

df

dx?

df

e Taking derivative we get — -
dx?

=0

1

[VIETPeoR |

=0
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Example

d>f 1
e Taking derivative we get 2 3 =0
< VITIPR
2f
e Therefore we have, — =0
dx?

— Xo)1 — X
e Hence we have f(x) = mx + b with m=22"21 anq p= "L
X2 — X1 Xo — X1
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Output units

e Choice of cost function is directly related with the choice of output function

e In most cases cost function is determined by cross entropy between data and model
distribution
e Any kind of output unit can be used as hidden unit
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Linear units

Suited for Gaussian output distribution

Given features h, linear output unit produces y = WTh+ b

This can be treated as conditional probablity p(y|x) = N (y;y, 1)
Maximizing log-likelihood is equivalent to minimizing mean square error
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Sigmoid unit

e Mostly suited for binary classification problem that is Bernoulli output distribution
e The neural networks need to predict p(y = 1|x)

e If linear unit has been chosen, p(y = 1|x) = max {1, min{0, W h + b}}

o Gradient?
e Model should have strong gradient whenever the answer is wrong

1
e Hence, logistic sigmoid function is preferred o(x) = 1+—()
exp(—x
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