## Introduction to Deep Learning



#### **Arijit Mondal**

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

• Also known as feedforward neural network or multilayer perceptron

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f\*
  - For classifier, x is mapped to category y ie.  $y = f^*(x)$
  - A feedforward network maps  $y = f(x; \theta)$  and learns  $\theta$  for which the result is the best function approximation

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f\*
  - For classifier, x is mapped to category y ie.  $y = f^*(x)$
  - A feedforward network maps  $y = f(x; \theta)$  and learns  $\theta$  for which the result is the best function approximation
- Information flows from input to intermediate to output
  - No feedback, directed acyclic graph
  - For general model, it can have feedback and known as recurrent neural network

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f\*
  - For classifier, x is mapped to category y ie.  $y = f^*(x)$
  - A feedforward network maps  $y = f(x; \theta)$  and learns  $\theta$  for which the result is the best function approximation
- Information flows from input to intermediate to output
  - No feedback, directed acyclic graph
  - For general model, it can have feedback and known as recurrent neural network
- Typically it represents composition of functions
  - Three functions  $f^{(1)}$ ,  $f^{(2)}$ ,  $f^{(3)}$  are connected in chain
  - Overall function realized is  $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$
  - The number of layers provides the depth of the model

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f\*
  - For classifier, x is mapped to category y ie.  $y = f^*(x)$
  - A feedforward network maps  $y = f(x; \theta)$  and learns  $\theta$  for which the result is the best function approximation
  - Information flows from input to intermediate to output
    - No feedback, directed acyclic graph
      For general model, it can have feedback and known as recurrent neural network
    - For general model, it can have reedback and known as recurr
  - Typically it represents composition of functions
    - Three functions  $f^{(1)}$ ,  $f^{(2)}$ ,  $f^{(3)}$  are connected in chain
    - Overall function realized is f(x) = f<sup>(3)</sup>(f<sup>(2)</sup>(f<sup>(1)</sup>(x)))
       The number of layers provides the depth of the model
  - Goal of NN is not to accurately model brain!

# Multilayer neural network



#### Issues with linear FFN

- Fit well for linear and logistic regression
- Convex optimization technique may be used
- Capacity of such function is limited
- Model cannot understand interaction between any two variables

• Transform x (input) into  $\phi(x)$  where  $\phi$  is nonlinear transformation

- Transform x (input) into  $\phi(x)$  where  $\phi$  is nonlinear transformation
- How to choose  $\phi$ ?

- Transform x (input) into  $\phi(x)$  where  $\phi$  is nonlinear transformation
- How to choose  $\phi$ ?
  - ullet Use a very generic  $\phi$  of high dimension
    - Enough capacity but may result in poor generalization
    - Very generic feature mapping usually based on principle of local smoothness
    - Do not encode enough prior information

- Transform x (input) into  $\phi(x)$  where  $\phi$  is nonlinear transformation
- How to choose  $\phi$ ?
  - Use a very generic  $\phi$  of high dimension
    - Enough capacity but may result in poor generalization
    - Very generic feature mapping usually based on principle of local smoothness
    - Do not encode enough prior information
  - Manually design  $\phi$ 
    - Require domain knowledge

- Transform x (input) into  $\phi(x)$  where  $\phi$  is nonlinear transformation
- How to choose  $\phi$ ?
  - Use a very generic  $\phi$  of high dimension
    - Enough capacity but may result in poor generalization
    - Very generic feature mapping usually based on principle of local smoothness
    - Do not encode enough prior information
  - Manually design  $\phi$ 
    - Require domain knowledge
  - ullet Strategy of deep learning is to learn  $\phi$

#### Goal of deep learning

- We have a model  $y = f(x; \theta, w) = \phi(x; \theta)^T w$
- We use  $\theta$  to learn  $\phi$
- w and  $\phi$  determines the output.  $\phi$  defines the hidden layer
- It looses the convexity of the training problem but benefits a lot
- Representation is parameterized as  $\phi(\mathbf{x}, \boldsymbol{\theta})$
- $\theta$  can be determined by solving optimization problem
- Advantages
  - ullet  $\phi$  can be very generic
  - Human practitioner can encode their knowledge to designing  $\phi(\mathbf{x}; \boldsymbol{\theta})$

#### Design issues of feedforward network

- Choice of optimizer
- Cost function
- The form of output unit
- Choice of activation function
- Design of architecture number of layers, number of units in each layer
- Computation of gradients

#### Example

- Let us choose XOR function
- Target function is  $y = f^*(x)$  and our model provides  $y = f(x; \theta)$
- ullet Learning algorithm will choose the parameters ullet to make f close to  $f^*$

#### **Example**

- Let us choose XOR function
- Target function is  $y = f^*(x)$  and our model provides  $y = f(x; \theta)$
- Learning algorithm will choose the parameters  $\theta$  to make f close to  $f^*$

• This can be treated as regression problem and MSE error can be chosen as loss

- Target is to fit output for  $X = \{[0, 0]^T, [0, 1]^T, [1, 0]^T, [1, 1]^T\}$
- function

   MSE loss function  $J(\theta) = \frac{1}{4} \sum (f^*(x) f(x; \theta))^2$
- $4\sum_{x\in X}($
- We need to choose  $f(x; \theta)$  where  $\theta$  depends on w and b
- Let us consider a linear model  $f(x; w, b) = x^T w + b$

#### Example

- Let us choose XOR function
- Target function is  $y = f^*(x)$  and our model provides  $y = f(x; \theta)$
- Learning algorithm will choose the parameters  $\theta$  to make f close to  $f^*$

• This can be treated as regression problem and MSE error can be chosen as loss

- Target is to fit output for  $X = \{[0,0]^T, [0,1]^T, [1,0]^T, [1,1]^T\}$
- function • MSE loss function  $J(\theta) = \frac{1}{4} \sum (f^*(x) - f(x; \theta))^2$
- We need to choose  $f(x; \theta)$  where  $\theta$  depends on w and b
- Let us consider a linear model  $f(x; w, b) = x^T w + b$ • Solving these, we get w = 0 and  $b = \frac{1}{2}$

• Let us assume that the hidden unit h computes  $f^{(1)}(x; W, c)$ 



- Let us assume that the hidden unit h computes  $f^{(1)}(x; W, c)$
- In the next layer  $y = f^{(2)}(h; w, b)$  is computed



- Let us assume that the hidden unit h computes  $f^{(1)}(x; W, c)$
- In the next layer  $y = f^{(2)}(h; w, b)$  is computed
- Complete model  $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$



- Let us assume that the hidden unit h computes  $f^{(1)}(x; W, c)$
- In the next layer  $y = f^{(2)}(h; w, b)$  is computed
- Complete model  $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$
- Suppose  $f^{(1)}(x) = W^T x$  and  $f^2(h) = h^T w$



- Let us assume that the hidden unit h computes  $f^{(1)}(x; W, c)$
- In the next layer  $y = f^{(2)}(h; w, b)$  is computed
- Complete model  $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$
- Suppose  $f^{(1)}(x) = W^T x$  and  $f^2(h) = h^T w$  then  $f(x) = w^T W^T x$



- Let us assume that the hidden unit h computes f<sup>(1)</sup>(x; W, c)
  In the next layer y = f<sup>(2)</sup>(h; w, b) is computed
- Complete model  $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$
- Complete model  $f(x; VV, C, W, b) = f^{(2)}(f^{(2)}(x))$ • Suppose  $f^{(1)}(x) = W^Tx$  and  $f^2(h) = h^Tw$  then  $f(x) = f^Tx$
- We need to have nonlinear function to describe the features
  Usually NN have affine transformation of learned param
  - eters followed by nonlinear activation function
- Let us use  $h = g(W^T x + c)$
- Let us use ReLU as activation function g(z) = max{0, z}
  g is chosen element wise h<sub>i</sub> = g(x<sup>T</sup> W<sub>·i</sub> + c<sub>i</sub>)



 $W^TW^Tx$ 

• Complete network is  $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$ 

- Complete network is  $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows
  - $\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ,  $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ ,  $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ , b = 0

- Complete network is  $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

  - $\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ,  $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ ,  $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ , b = 0
- Now we have
- X

- Complete network is  $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows
- - $\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ,  $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ ,  $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ , b = 0
- Now we have •  $X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$

- Complete network is  $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows
- - $\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ,  $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ ,  $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ , b = 0
- Now we have
- $\bullet \ \mathbf{X} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, \ \mathbf{XW}$

- Complete network is  $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows
  - - $\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ,  $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ ,  $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ , b = 0
- Now we have
- $\mathbf{X} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, \ \mathbf{XW} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix},$

- Complete network is  $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows
- $\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ,  $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ ,  $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ , b = 0
- $\mathbf{X} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$ ,  $\mathbf{X}\mathbf{W} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$ , add bias  $\mathbf{c}$

Now we have

- Complete network is  $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows
- $\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ,  $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ ,  $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ , b = 0
- Now we have •  $X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$ ,  $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$ , add bias  $c \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$ ,

- Complete network is  $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

  - $\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ,  $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ ,  $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ , b = 0
- Now we have

- Complete network is  $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows
- $\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ,  $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ ,  $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ , b = 0
- Now we have
- $X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$ ,  $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$ , add bias  $c \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$ , apply  $h \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$ ,

- Complete network is  $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows
- $\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ,  $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ ,  $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ , b = 0
- Now we have •  $X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$ ,  $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$ , add bias  $c \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$ , apply  $h \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$ , multiply

with w

# Simple feedforward network with hidden layer

- Complete network is  $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows
- - $\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ,  $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ ,  $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ , b = 0
- Now we have

  - $X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$ ,  $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$ , add bias  $c \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$ , apply  $h \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$ , multiply
- with  $\boldsymbol{w} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

# Gradient based learning

- Similar to machine learning tasks, gradient descent based learning is used
  - Need to specify optimization procedure, cost function and model family
- For NN, model is nonlinear and function becomes nonconvex
  - Usually trained by iterative, gradient based optimizer
- Solved by using gradient descent or stochastic gradient descent (SGD)

### Gradient descent

- Suppose we have a function y = f(x), derivative (slope at point x) of it is f'(x) = dy/dx
  A small change in the input can cause output to move to a value given by f(x + ε) ≈ f(x) + εf'(x)
- We need to take a jump so that  $\gamma$  reduces (assuming minimization problem)
- We can say that  $f(x \epsilon \operatorname{sign}(f'(x)))$  is less than f(x)
- For multiple inputs partial derivatives are used ie.  $\frac{\partial}{\partial x_i} f(x)$
- Gradient vector is represented as  $\nabla_x f(x)$
- Gradient descent proposes a new point as  $\mathbf{x}' = \mathbf{x} \epsilon \nabla_{\mathbf{x}} f(\mathbf{x})$  where  $\epsilon$  is the learning rate

# Stochastic gradient descent

- Large training set are necessary for good generalization
- Typical cost function used for optimization is  $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$
- Gradient descent requires computing of  $\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(x^{(i)}, y^{(i)}, \theta)$

# Stochastic gradient descent

- Large training set are necessary for good generalization
- Typical cost function used for optimization is  $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$
- Gradient descent requires computing of  $\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(x^{(i)}, y^{(i)}, \theta)$
- Computation cost is O(m)

# Stochastic gradient descent

- Large training set are necessary for good generalization
- Typical cost function used for optimization is  $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$
- Gradient descent requires computing of  $\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(x^{(i)}, y^{(i)}, \theta)$
- Computation cost is O(m)
- For SGD, gradient is an expectation estimated from a small sample known as minibatch ( $\mathbb{B} = \{x^{(1)}, \dots, x^{(m')}\}$ )
- Estimated gradient is  $g = \frac{1}{m'} \sum_{i=1}^{m'} \nabla_{\theta} L(x^{(i)}, y^{(i)}, \theta)$
- New point will be  $\theta = \theta \epsilon \mathbf{g}$

#### Cost function

- Similar to other parametric model like linear models
- Parametric model defines distribution  $p(y|x;\theta)$
- Principle of maximum likelihood is used (cross entropy between training data and model prediction)
- Instead of predicting the whole distribution of y, some statistic of y conditioned on
   x is predicted
- It can also contain regularization term

- Consider a set of m examples  $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$  drawn independently from the true but unknown data generating distribution  $p_{data}(x)$
- Let  $p_{model}(x; \theta)$  be a parametric family of probability distribution

- Consider a set of m examples  $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$  drawn independently from the true but unknown data generating distribution  $p_{data}(x)$
- Let  $p_{model}(x; \theta)$  be a parametric family of probability distribution
- Maximum likelihood estimator for  $\theta$  is defined as

$$oldsymbol{ heta}_{ extit{ML}} = rg\max_{oldsymbol{ heta}} p_{model}(\mathbb{X};oldsymbol{ heta}) = rg\max_{oldsymbol{ heta}} \prod_{i=1}^m p_{model}(oldsymbol{x}^{(i)};oldsymbol{ heta})$$

- Consider a set of m examples  $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$  drawn independently from the true but unknown data generating distribution  $p_{data}(x)$
- Let  $p_{model}(x; \theta)$  be a parametric family of probability distribution
- Maximum likelihood estimator for  $\theta$  is defined as

$$oldsymbol{ heta}_{\mathit{ML}} = rg\max_{oldsymbol{ heta}} p_{\mathit{model}}(\mathbb{X}; oldsymbol{ heta}) = rg\max_{oldsymbol{ heta}} \prod_{i=1}^{m} p_{\mathit{model}}(x^{(i)}; oldsymbol{ heta})$$

• It can be written as  $oldsymbol{ heta}_{ML} = rg \max_{oldsymbol{ heta}} \sum_{i=1}^{n} \log p_{model}(oldsymbol{x}^{(i)};oldsymbol{ heta})$ 

- Consider a set of m examples  $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$  drawn independently from the true but unknown data generating distribution  $p_{data}(x)$
- Let  $p_{model}(x; \theta)$  be a parametric family of probability distribution
- Maximum likelihood estimator for  $\theta$  is defined as

$$oldsymbol{ heta}_{ extit{ML}} = rg\max_{oldsymbol{ heta}} p_{model}(\mathbb{X};oldsymbol{ heta}) = rg\max_{oldsymbol{ heta}} \prod_{i=1}^m p_{model}(x^{(i)};oldsymbol{ heta})$$

- It can be written as  $m{ heta}_{ML} = rg \max_{m{ heta}} \sum \log p_{model}(m{x}^{(i)};m{ heta})$
- By dividing m we get  $\theta_{ML} = \arg\max_{a} \mathbb{E}_{m{X} \sim \hat{p}_{data}} \log p_{model}(m{x}; m{\theta})$

- Consider a set of m examples  $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$  drawn independently from the true but unknown data generating distribution  $p_{data}(x)$
- Let  $p_{model}(x; \theta)$  be a parametric family of probability distribution
- Maximum likelihood estimator for heta is defined as

$$oldsymbol{ heta}_{ML} = rg \max_{oldsymbol{ heta}} p_{model}(\mathbb{X}; oldsymbol{ heta}) = rg \max_{oldsymbol{ heta}} \prod_{i=1}^{p_{model}} p_{model}(oldsymbol{x}^{(i)}; oldsymbol{ heta})$$

- It can be written as  $heta_{ML} = rg \max_{ heta} \sum_{i=1}^{n} \log p_{model}(x^{(i)}; heta)$
- By dividing m we get  $heta_{ML} = \arg\max_{ heta} \mathbb{E}_{m{X} \sim \hat{p}_{data}} \log p_{model}(m{x}; m{ heta})$
- We need to minimize  $-\arg\max_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{X} \sim \hat{p}_{data}} \log p_{model}(\boldsymbol{x}; \boldsymbol{\theta})$

# Conditional log-likelihood

- In most of the supervised learning we estimate  $P(y|x;\theta)$
- If X be the all inputs and Y be observed targets then conditional maximum likelihood estimator is  $\theta_{ML} = \arg\max_{\theta} P(Y|X;\theta)$
- If the examples are assumed to be i.i.d then we can say

$$oldsymbol{ heta}_{\mathit{ML}} = rg \max_{oldsymbol{ heta}} \sum_{i=1}^{m} \log P(oldsymbol{y}^{(i)} | oldsymbol{x}^{(i)}; oldsymbol{ heta})$$

- Instead of producing single prediction  $\hat{y}$  for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)

- Instead of producing single prediction  $\hat{y}$  for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)
- Let us assume,  $p(y|x) = \mathcal{N}(y; \hat{y}(x; w), \sigma^2)$

- Instead of producing single prediction  $\hat{y}$  for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)
- Let us assume,  $p(y|x) = \mathcal{N}(y; \hat{y}(x; w), \sigma^2)$
- Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

$$\sum_{i=1}^{m} \log p(\mathbf{y}^{(i)}|\mathbf{x}^{(i)};\boldsymbol{\theta})$$

- Instead of producing single prediction  $\hat{y}$  for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of v
- Goal is to fit the distribution p(y|x)
- Let us assume,  $p(y|x) = \mathcal{N}(y; \hat{y}(x; w), \sigma^2)$
- Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

$$\sum_{i=1}^{m} \log p(\mathbf{y}^{(i)}|\mathbf{x}^{(i)}; \boldsymbol{\theta}) = -m \log \sigma - \frac{m}{2} \log(2\pi) - \sum_{i=1}^{m} \frac{\|\hat{\mathbf{y}}^{(i)} - \mathbf{y}^{(i)}\|^2}{2\sigma^2}$$

#### Learning conditional distributions with max likelihood

- Usually neural networks are trained using maximum likelihood. Therefore the cost function is negative log-likelihood. Also known as cross entropy between training data and model distribution
- Cost function  $J(\theta) = -\mathbb{E}_{X,Y \sim \hat{p}_{data}} \log p_{model}(y|x)$
- Uniform across different models
- Gradient of cost function is very much crucial
  - Large and predictable gradient can serve good guide for learning process
  - Function that saturates will have small gradient
    - Activation function usually produces values in a bounded zone (saturates)
  - Negative log-likelihood can overcome some of the problems
    - Output unit having exp function can saturate for high negative value
    - Log-likelihood cost function undoes the exp of some output functions

- Instead of learning the whole distribution  $p(y|x;\theta)$ , we want to learn one conditional statistics of y given x
  - For a predicting function  $f(x;\theta)$ , we would like to predict the mean of y

- Instead of learning the whole distribution  $p(y|x;\theta)$ , we want to learn one conditional statistics of y given x
  - For a predicting function  $f(x;\theta)$ , we would like to predict the mean of y
- ullet Neural network can represent any function f from a very wide range of functions
- Range of function is limited by features like continuty, boundedness, etc.

- Instead of learning the whole distribution  $p(y|x;\theta)$ , we want to learn one conditional statistics of y given x
  - For a predicting function  $f(x; \theta)$ , we would like to predict the mean of y
- ullet Neural network can represent any function f from a very wide range of functions
- Range of function is limited by features like continuty, boundedness, etc.
- Cost function becomes functional rather than a function

- Instead of learning the whole distribution  $p(y|x;\theta)$ , we want to learn one conditional statistics of y given x
  - For a predicting function  $f(x;\theta)$ , we would like to predict the mean of y
- ullet Neural network can represent any function f from a very wide range of functions
- Range of function is limited by features like continuty, boundedness, etc.
- Cost function becomes functional rather than a function
   Need to solve the optimization problem f\* = arg min E<sub>X,Y~p<sub>data</sub></sub> ||y f(x)||<sup>2</sup>
- Using calculus of variation, it gives  $f^*(x) = \mathbb{E}_{Y \sim P_{\text{data}}(Y|X)}[y]$ 
  - Mean of v for each value of x
- Using a different cost function  $f^* = \arg\min_{\epsilon} \mathbb{E}_{X,Y \sim p_{data}} \|y f(x)\|_1$ 
  - Median of y for each value of x

• Let us consider functional  $J[y] = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$ 

- Let us consider functional  $J[y] = \int_{0}^{x_2} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say  $J[f] \leq J[f + \varepsilon \eta]$

•  $\eta$  is an arbitrary function of x such that  $\eta(x_1) = \eta(x_2) = 0$  and differentiable

- Let us consider functional  $J[y] = \int_{0}^{x_2} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say  $J[f] < J[f + \varepsilon \eta]$
- $\eta$  is an arbitrary function of x such that  $\eta(x_1) = \eta(x_2) = 0$  and differentiable
- Let us assume  $\Phi(\varepsilon) = J[f + \varepsilon \eta]$ . Therefore,  $\Phi'(0) \equiv \frac{d\Phi}{d\varepsilon}\Big|_{\varepsilon=0} = \int_{-\infty}^{x_2} \frac{dL}{d\varepsilon}\Big|_{\varepsilon=0} dx = 0$

- Let us consider functional  $J[y] = \int_{-\infty}^{\infty} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say  $J[f] < J[f + \varepsilon \eta]$
- $\eta$  is an arbitrary function of x such that  $\eta(x_1) = \eta(x_2) = 0$  and differentiable
- Let us assume  $\Phi(\varepsilon) = J[f + \varepsilon \eta]$ . Therefore,  $\Phi'(0) \equiv \frac{d\Phi}{d\varepsilon}\Big|_{0} = \int_{0}^{x_2} \frac{dL}{d\varepsilon}\Big|_{0} dx = 0$
- Now we can say,  $\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial v} \frac{dy}{d\varepsilon} + \frac{\partial L}{\partial v'} \frac{dy'}{d\varepsilon}$

- Let us consider functional  $J[y] = \int_{-\infty}^{\infty} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say  $J[f] \leq J[f + \varepsilon \eta]$
- $\eta$  is an arbitrary function of x such that  $\eta(x_1) = \eta(x_2) = 0$  and differentiable
- Let us assume  $\Phi(\varepsilon) = J[f + \varepsilon \eta]$ . Therefore,  $\Phi'(0) \equiv \frac{d\Phi}{d\varepsilon}\Big|_{\varepsilon} = \int_{-\infty}^{\infty} \frac{dL}{d\varepsilon}\Big|_{\varepsilon} dx = 0$ • Now we can say,  $\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial v} \frac{dy}{d\varepsilon} + \frac{\partial L}{\partial v'} \frac{dy'}{d\varepsilon}$
- As we have  $y = f + \varepsilon \eta$  and  $y' = f' + \varepsilon \eta'$ , therefore,  $\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial v} \eta + \frac{\partial L}{\partial v'} \eta'$

Now we have

$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \bigg|_{\varepsilon=0} dx = \int_{x_1}^{x_2} \left( \frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' \right) dx$$

• Now we have 
$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \bigg|_{\varepsilon=0} dx = \int_{x_1}^{x_2} \left( \frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' \right) dx = \int_{x_1}^{x_2} \left( \frac{\partial L}{\partial f} \eta - \eta \frac{d}{dx} \frac{\partial L}{\partial f'} \right) dx + \left. \frac{\partial L}{\partial f'} \eta \right|_{x_1}^{x_2}$$

$$\int_{-\infty}^{\infty} \frac{dL}{dL}$$

**IIT Patna** 

$$\int_{-\infty}^{\infty} dL$$

$$\int_{-\infty}^{\infty} \frac{dL}{dc}$$

 $\int_{-\infty}^{\infty} \eta \left( \frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right) dx = 0$ 

• Now we have 
$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \bigg|_{\varepsilon=0} dx = \int_{x_1}^{x_2} \left( \frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' \right) dx = \int_{x_1}^{x_2} \left( \frac{\partial L}{\partial f} \eta - \eta \frac{d}{dx} \frac{\partial L}{\partial f'} \right) dx + \left. \frac{\partial L}{\partial f'} \eta \right|_{x_1}^{x_2}$$

Hence

**IIT Patna** 

• Euler-Lagrange equation

$$\int_{-\infty}^{\infty}$$

 $\int_{-\infty}^{\infty} \eta \left( \frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right) dx = 0$ 

 $\frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} = 0$ 

• Let us consider distance between two points  $A[y] = \int_{x_1}^{x_2} \sqrt{1 + [y'(x)]^2} dx$ 

• 
$$y'(x) = \frac{dy}{dx}$$
,  $y_1 = f(x_1)$ ,  $y_2 = f(x_2)$ 

• Let us consider distance between two points  $A[y] = \int_{-\infty}^{\infty} \sqrt{1 + [y'(x)]^2} \, dx$ 

$$J_{x_1}$$
•  $y'(x) = \frac{dy}{dx}$ ,  $y_1 = f(x_1)$ ,  $y_2 = f(x_2)$ 

•  $y'(x) = \frac{dy}{dx}$ ,  $y_1 = f(x_1)$ ,  $y_2 = f(x_2)$ • We have,  $\frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} = 0$  where  $L = \sqrt{1 + [f'(x)]^2}$ 

• Let us consider distance between two points  $A[y] = \int_{-\infty}^{\infty} \sqrt{1 + [y'(x)]^2} dx$ 

• 
$$y'(x) = \frac{dy}{dx}$$
,  $y_1 = f(x_1)$ ,  $y_2 = f(x_2)$ 

• We have,  $\frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} = 0$  where  $L = \sqrt{1 + [f'(x)]^2}$ 

• As 
$$f$$
 does not appear explicitly in  $L$ , hence  $\frac{d}{dx}\frac{\partial L}{\partial f'}=0$ 

• Let us consider distance between two points  $A[y] = \int_{-\infty}^{\infty} \sqrt{1 + [y'(x)]^2} dx$ 

• 
$$y'(x) = \frac{dy}{dx}$$
,  $y_1 = f(x_1)$ ,  $y_2 = f(x_2)$ 

• 
$$y'(x) = \frac{dy}{dx}$$
,  $y_1 = f(x_1)$ ,  $y_2 = f(x_2)$ 

• We have, 
$$\frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} = 0$$
 where  $L = \sqrt{1 + [f'(x)]^2}$ 

We have, 
$$\frac{\partial f}{\partial f} - \frac{\partial f}{\partial x} = 0$$
 where  $L = \sqrt{1 + [f'(x)]^2}$ 

As  $f$  does not appear explicitly in  $L$ , hence  $\frac{d}{dx} = 0$ 

• As 
$$f$$
 does not appear explicitly in  $L$ , hence  $\frac{d}{dx}\frac{\partial L}{\partial f'}=0$ 

• As 
$$f$$
 does not appear explicitly in  $L$ , hence  $\frac{d}{dx} \frac{\partial L}{\partial f'} = 0$   
• Now we have,  $\frac{d}{dx} \frac{f'(x)}{\sqrt{1 + [f'(x)]^2}} = 0$ 

• As 
$$f$$
 does not appear explicitly in  $L$ , hence  $\frac{d}{dt} \frac{\partial L}{\partial f'} = 0$ 

**IIT Patna** 

• Taking derivative we get  $\frac{d^2f}{dx^2}$  ·  $\frac{1}{\left[\sqrt{1+[f'(x)]^2}\;\right]^3}=0$ • Therefore we have,  $\frac{d^2f}{dx^2} = 0$ 

- Taking derivative we get  $\frac{d^2f}{dx^2}$  ·  $\frac{1}{\left[\sqrt{1+[f'(x)]^2}\;\right]^3}=0$

- Therefore we have,  $\frac{d^2f}{dx^2} = 0$
- Hence we have f(x) = mx + b with  $m = \frac{y_2 y_1}{x_2 x_1}$  and  $b = \frac{x_2y_1 x_1y_2}{x_2 x_1}$

#### **Output units**

- Choice of cost function is directly related with the choice of output function
- In most cases cost function is determined by cross entropy between data and model distribution
- Any kind of output unit can be used as hidden unit

#### **Linear units**

- Suited for Gaussian output distribution
- Given features h, linear output unit produces  $\hat{y} = W^T h + b$
- This can be treated as conditional probablity  $p(y|x) = \mathcal{N}(y; \hat{y}, I)$
- Maximizing log-likelihood is equivalent to minimizing mean square error

### Sigmoid unit

- Mostly suited for binary classification problem that is Bernoulli output distribution
- The neural networks need to predict p(y = 1|x)
  - If linear unit has been chosen,  $p(y=1|x) = \max\left\{1, \min\{0, \boldsymbol{W}^T\boldsymbol{h} + \boldsymbol{b}\}\right\}$
  - Gradient?
- Model should have strong gradient whenever the answer is wrong
- Hence, logistic sigmoid function is preferred  $\sigma(x) = \frac{1}{1 + \exp(-x)}$