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Deep feedforward networks

e Also known as feedforward neural network or multilayer perceptron
e Goal of such network is to approximate some function f*

e For classifier, x is mapped to category y ie. y = f*(x)

e A feedforward network maps y = f(x;0) and learns 6 for which the result is the best
function approximation
e Information flows from input to intermediate to output
o No feedback, directed acyclic graph
e For general model, it can have feedback and known as recurrent neural network
e Typically it represents composition of functions
o Three functions f(1), (2 f3) are connected in chain
o Overall function realized is f(x) = f@®)(F)(F(1)(x)))
e The number of layers provides the depth of the model

e Goal of NN is not to accurately model brain!
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Multilayer neural network
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Issues with linear FFN

e Fit well for linear and logistic regression
e Convex optimization technique may be used
e Capacity of such function is limited

e Model cannot understand interaction between any two variables
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e Transform x (input) into ¢(x) where ¢ is nonlinear transformation
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Overcome issues of linear FFN

e Transform x (input) into ¢(x) where ¢ is nonlinear transformation
e How to choose ¢?
e Use a very generic ¢ of high dimension

e Enough capacity but may result in poor generalization
e Very generic feature mapping usually based on principle of local smoothness
e Do not encode enough prior information

e Manually design ¢
e Require domain knowledge

o Strategy of deep learning is to learn ¢
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Goal of deep learning

e We have a model y = f(x;0,w) = ¢(x;0)"w

We use 0 to learn ¢
e w and ¢ determines the output. ¢ defines the hidden layer
e It looses the convexity of the training problem but benefits a lot
e Representation is parameterized as ¢(x, 0)
e 0 can be determined by solving optimization problem
e Advantages

e ¢ can be very generic
e Human practitioner can encode their knowledge to designing ¢(x; 6)

IIT Patna




Design issues of feedforward network

Choice of optimizer
Cost function

The form of output unit
Choice of activation function

Design of architecture - number of layers, number of units in each layer

Computation of gradients
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Example
e Let us choose XOR function

e Target function is y = f*(x) and our model provides y = f(x; 0)
e Learning algorithm will choose the parameters 6 to make f close to f*
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Example

e Let us choose XOR function

e Target function is y = f*(x) and our model provides y = f(x; 0)

e Learning algorithm will choose the parameters 6 to make f close to f*

e Target is to fit output for X = {[0,0]",[0,1]",[1,0]",[1,1]"}

e This can be treated as regression problem and MSE error can be chosen as loss

function

e MSE loss function J(6) = iZ(f*(X) — f(x:;0))?

xeX
e \We need to choose f(x; 8) where 8 depends on w and b

e Let us consider a linear model f(x; w,b) = x"w + b
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Example

Let us choose XOR function

Target function is y = f*(x) and our model provides y = f(x; 0)
Learning algorithm will choose the parameters 6 to make f close to f*
Target is to fit output for X = {[0,0]",[0,1]",[1,0]7,[1,1]"}

This can be treated as regression problem and MSE error can be chosen as loss
function

: 1 . Y
e MSE loss function J(6) = ; g((f (x) — f(x;0))
e \We need to choose f(x; 8) where 8 depends on w and b

Let us consider a linear model f(x; w,b) = x"w + b
e Solving these, we get w =0 and b = 3
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Simple feedforward network with hidden layer

e Let us assume that the hidden unit h computes
fFO(x; W, c)

ONENO
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Simple feedforward network with hidden layer

e Let us assume that the hidden unit h computes
fO(x; W, c)

e In the next layer y = f)(h; w, b) is computed @ @
e Complete model f(x; W, c,w,b) = f(f)(x))

w
e Suppose f()(x) = W Tx and f2(h) = h" w then f(x) =
w WTx
e We need to have nonlinear function to describe the fea-
tures w

e Usually NN have affine transformation of learned param-
eters followed by nonlinear activation function @ @

o Let ususe h=g(W'x+c)
e Let us use RelLU as activation function g(z) = max{0, z}
e g is chosen element wise h; = g(x"W.; + ¢;)
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Simple feedforward network with hidden layer

e Complete network is f(x; W, c,w,b) = w max{0, W x + ¢} + b
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[ e e
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Simple feedforward network with hidden layer

e Complete network is f(x; W, c,w,b) = w’ max{0, W x + c} + b
e A solution for XOR problem can be as follows

e e [

e Now we have

« X = L XW =

= = O O
N R PR O

0
1
1
2

= O = O
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Simple feedforward network with hidden layer

e Complete network is f(x; W, c,w,b) = w’ max{0, W x + c} + b
e A solution for XOR problem can be as follows

e e [

e Now we have

e X = , XW = , add bias ¢

= O = O
= = O O
N R PR O
N = = O
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Simple feedforward network with hidden layer

e Complete network is f(x; W, c,w,b) = w’ max{0, W x + c} + b
e A solution for XOR problem can be as follows

e e[ e

e Now we have

, add bias ¢ , apply h

N R PR O
N = = O
N R R O
= O O
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Simple feedforward network with hidden layer

e Complete network is f(x; W, c,w,b) = w’ max{0, W x + c} + b
e A solution for XOR problem can be as follows

e e[ e

e Now we have

00 0 0 0 -1 0
10 11 : 1 0 1
o« X = 01 XW = 11 add bias ¢ L apply h 1
11 2 2 2 1 2

= O O O
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e Complete network is f(x; W, c,w,b) = w’ max{0, W x + c} + b
e A solution for XOR problem can be as follows

e e[ e

e Now we have

00 0 0 0 -1 0
10 11 : 1 0 1
o« X = 01 XW = 11 add bias ¢ L apply h 1
11 2 2 2 1 2

with w

= O O O

, multiply
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Simple feedforward network with hidden layer

e Complete network is f(x; W, c,w,b) = w’ max{0, W x + c} + b
e A solution for XOR problem can be as follows

e e[ e

e Now we have

00 00 0 -1 00
10 11 } 1 0 10 )
e X = 0o 1| XW = 11 add bias ¢ 1o | apply h 1o | multiply
11 2 2 2 1 2 1
0
with w 1
0
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Gradient based learning

e Similar to machine learning tasks, gradient descent based learning is used
e Need to specify optimization procedure, cost function and model family

e For NN, model is nonlinear and function becomes nonconvex
e Usually trained by iterative, gradient based optimizer

e Solved by using gradient descent or stochastic gradient descent (SGD)

IIT Patna
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Gradient descent

Suppose we have a function y = f(x), derivative (slope at point x) of it is f'(x) = %

A small change in the input can cause output to move to a value given by f(x + ¢) ~
f(x) + ef’(x)

We need to take a jump so that y reduces (assuming minimization problem)

We can say that f(x — esign(f’(x))) is less than f(x)

For multiple inputs partial derivatives are used ie. O%f(x)

Gradient vector is represented as V,f(x)

Gradient descent proposes a new point as x’ = x — eV ,f(x) where ¢ is the learning
rate
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Stochastic gradient descent
e Large training set are necessary for good generalization

1 . .
e Typical cost function used for optimization is J(6) = — Z L(x,yD 0)
m <

1 . .
e Gradient descent requires computing of VyJ(0) = = E Vol (x, y) )
i=1
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Stochastic gradient descent

e Large training set are necessary for good generalization

1 . .
Typical cost function used for optimization is J(0) = — Z L(x,yD 0)
m <

1 . .
Gradient descent requires computing of VyJ(0) = — E Vol(x, y) )
m
i=1

o Computation cost is O(m)

For SGD, gradient is an expectation estimated from a small sample known as mini-
batch (B = {x®) ... x(m)})

1 & .
Estimated gradient is g = — >~ VyL(x1,y1, )
m
i=1

e New point will be 8 =0 — ¢g
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Cost function

e Similar to other parametric model like linear models
e Parametric model defines distribution p(y|x; 0)

e Principle of maximum likelihood is used (cross entropy between training data and
model prediction)

e Instead of predicting the whole distribution of y, some statistic of y conditioned on
x is predicted

e |t can also contain regularization term

IIT Patna
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Maximum likelihood estimation

e Consider a set of m examples X = {x(}) ... x(M} drawn independently from the
true but unknown data generating distribution pyac.(x)

e Let proge(x; 0) be a parametric family of probability distribution
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Maximum likelihood estimation

e Consider a set of m examples X = {x(}) ... x(M} drawn independently from the
true but unknown data generating distribution pyac.(x)

e Let proge(x; 0) be a parametric family of probability distribution

e Maximum likelihood estimator for 0 is defined as

OML = arg meax mede’(X; 0) = arg maax ]illz pmode/(x(i); 0)

e It can be written as @y, = arg meaxz log pmodel(x(i); 0)
i=1
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Maximum likelihood estimation

e Consider a set of m examples X = {x(}) ... x(M} drawn independently from the
true but unknown data generating distribution pyac.(x)

Let Pmoder(x; @) be a parametric family of probability distribution
Maximum likelihood estimator for @ is defined as

OML = arg meax mede’(X; 0) = arg maax ]illz pmode/(x(i); 0)

It can be written as 0y, = arg meaxz log pmodel(x(i); 0)
i=1
By dividing m we get 0, = arg m§XEX~ﬁdata l0g Pmodel(X; 6)
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Maximum likelihood estimation

e Consider a set of m examples X = {x(}) ... x(M} drawn independently from the
true but unknown data generating distribution pyac.(x)

Let Pmoder(x; @) be a parametric family of probability distribution
Maximum likelihood estimator for @ is defined as

OML = arg mglx mede’(X; 0) - arg maax ]illz pmode/(x(i); 0)

It can be written as 0y, = arg meaxz log pmodel(x(i); 0)
i=1
By dividing m we get 0, = arg m@axIEXN‘;d‘_“a l0g Pmodel(X; 6)

We need to minimize — arg max Ex~py, 108 Pmoder(X; 6)
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Conditional log-likelihood

e In most of the supervised learning we estimate P(y|x; 0)
e If X be the all inputs and Y be observed targets then conditional maximum likelihood
estimator is 6y, = arg max P(Y|X;0)

e |If the examples are assumed to be i.i.d then we can say

= log P(y()|x(-
v argmgxz og P(y""[x'"; 6)

i=1
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Linear regression as maximum likelihood

e Instead of producing single prediction y for a given x, we assume the model produces
conditional distribution p(y|x)

e For infinitely large training set, we can observe multiple examples having the same x
but different values of y

e Goal is to fit the distribution p(y|x)
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Linear regression as maximum likelihood

e Instead of producing single prediction y for a given x, we assume the model produces
conditional distribution p(y|x)

For infinitely large training set, we can observe multiple examples having the same x
but different values of y

Goal is to fit the distribution p(y|x)
Let us assume, p(y|x) = N (y; y(x; w),c?)

Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

> logp(y|x; 6)
i=1
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Linear regression as maximum likelihood

e Instead of producing single prediction y for a given x, we assume the model produces
conditional distribution p(y|x)

For infinitely large training set, we can observe multiple examples having the same x
but different values of y

Goal is to fit the distribution p(y|x)
Let us assume, p(y|x) = N (y; y(x; w),c?)

Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

= m 66) _ )12
3 (). g) — _m -y I = y?)?
2 log p(y""’|x"";0) = —mlog o 5 log(27) 2 >
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Learning conditional distributions with max likelihood

e Usually neural networks are trained using maximum likelihood. Therefore the cost
function is negative log-likelihood. Also known as cross entropy between training
data and model distribution

e Cost function J(60) = —Ex y.p,.. 108 Pmodel (¥ |X)

e Uniform across different models

e Gradient of cost function is very much crucial

e Large and predictable gradient can serve good guide for learning process
e Function that saturates will have small gradient

e Activation function usually produces values in a bounded zone (saturates)
e Negative log-likelihood can overcome some of the problems

e Output unit having exp function can saturate for high negative value
e Log-likelihood cost function undoes the exp of some output functions
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Learning conditional statistics

e Instead of learning the whole distribution p(y|x; @), we want to learn one conditional
statistics of y given x

e For a predicting function f(x; @), we would like to predict the mean of y

IIT Patna

20




Learning conditional statistics

e Instead of learning the whole distribution p(y|x; @), we want to learn one conditional
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e Neural network can represent any function f from a very wide range of functions
e Range of function is limited by features like continuity, boundedness, etc.
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Learning conditional statistics

e Instead of learning the whole distribution p(y|x; @), we want to learn one conditional
statistics of y given x

e For a predicting function f(x;8), we would like to predict the mean of y
e Neural network can represent any function f from a very wide range of functions
e Range of function is limited by features like continuity, boundedness, etc.
e Cost function becomes functional rather than a function

e Need to solve the optimization problem f* = arg mfin Ex.veppslly — F(X)?
e Using calculus of variation, it gives f*(x) = Eyp,.(yx) V]

e Mean of y for each value of x
e Using a different cost function * = arg mfin Ex.yepg.lly — F(x)]1

e Median of y for each value of x
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Calculus of variation

X2
e Let us consider functional J[y]| = / L(x,y(x),y'(x)) dx
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e 7 is an arbitrary function of x such that 7(x;) = 7(x2) = 0 and differentiable
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X2
e Let us consider functional J[y]| = / L(x,y(x),y'(x)) dx

e Let J[y] has local minima at f. Therefore, we can say J[f] < J[f + en]

e 7 is an arbitrary function of x such that 7(x;) = 7(x2) = 0 and differentiable

do e dL

= = / — dx
e=0 X1 de

e Let us assume ®(c) = J[f +en]. Therefore, ®'(0) = o
€ e=0
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Calculus of variation

x2
Let us consider functional J[y] = / L(x,y(x),y'(x)) dx

Let J[y] has local minima at f. Therefore, we can say J[f| < J[f + 7]
e 7 is an arbitrary function of x such that 7(x;) = 7(x2) = 0 and differentiable

Cdo| /'X2 dL
e=0 X1 de

Let us assume ®(¢) = J[f +en]. Therefore, ¥'(0) = o
£

e=0
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Let us assume ®(¢) = J[f +en]. Therefore, ¥'(0) = o
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Calculus of variation

X2
Let us consider functional J[y] = / L(x,y(x),y'(x)) dx

Let J[y] has local minima at f. Therefore, we can say J[f| < J[f + 7]

e 7 is an arbitrary function of x such that 7(x;) = 7(x2) = 0 and differentiable

| &
N de

do
Let us assume ®(c) = J[f +en]. Therefore, ¢'(0) = o

e=0

Now we can sa db _ oL dy + OL dy’
[ ] W Wi _— = —— -
Y e dy de 0y’ de
dL oL
As we have y = f +en and y' = f' + 1/, therefore, — = —

de 8yn+

oL
({)y’77

/

e=0

dx =0
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Calculus of variation

e Now we have

[TE w = [ (G ) ¢
Lodel T \afT T arT )
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Calculus of variation

e Now we have

/X2 dL 4 /X2 oL
N X — N
o de|_o o \Of

)

-/

ot 4ok
of 1~ Tdxof

)

oL
d =
X + Qf’n

X2

X1
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Calculus of variation

e Now we have

/XZdL dx / oL ot d/x2 oL doby ot
el T \ar e ) = )\ Taxar ) T o

e Hence
[T g0ty
L \of T daxor ) T

X2

|
o
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Calculus of variation

e Now we have

/XZdL J / oL ot d/x2 oL doby ot
el T \ar e ) = )\ Taxar ) T o

e Hence
[T g0ty
L \of T daxor ) T

oL d oL

of  dxof

X2

|
o

e Euler-Lagrange equation
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Example

x2
e Let us consider distance between two points Aly] = / V14 [y/(x)]? dx

%, yi= f(Xl)a Y2 = f(Xz)
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Example
x2
e Let us consider distance between two points Aly] = / V14 [y/(x)]? dx

d
-y’(X)Zdjy(, n="Ff), y2="*f(e)

oL dot 0 where L = /14 [f'(x)]?

o We have, of —&%

23
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Example

x2
e Let us consider distance between two points Aly] = / V14 [y/(x)]? dx

e y'(x)=

dy

dx’

oL

e We have, —

of

vi="f(x), y2=f(x)

d oL

_—— = — / 2

T OF 0 where L 1+ [f'(x)]
d oL

e As f does not appear explicitly in L, hence —— =10
dx Of’
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Example

X2
e Let us consider distance between two points Aly] = / V14 [y/(x)]? dx

d
() =0 n=Fla), v =)
oL d oL B T
e We have, 9 df 0 where L = /1 + [f'(x)]
o d oL
e As f does not appear explicitly in L, hence —— =10
dx Of’
d f'(x)

e Now we have, — ——~-—— =
dx /1+[f'(x)]?
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df

e Taking derivative we get — -
dx?

1

[VIETPeoR |

=0
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Example

e Therefore we have,

df

dx?

df

e Taking derivative we get — -
dx?

=0

1

[VIETPeoR |

=0
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Example

d>f 1
e Taking derivative we get 2 3 =0
< VITIPR
2f
e Therefore we have, — =0
dx?

— Xo)1 — X
e Hence we have f(x) = mx + b with m=22"21 anq p= "L
X2 — X1 Xo — X1
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Output units

e Choice of cost function is directly related with the choice of output function

e In most cases cost function is determined by cross entropy between data and model
distribution
e Any kind of output unit can be used as hidden unit
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Linear units

Suited for Gaussian output distribution

Given features h, linear output unit produces y = WTh+ b

This can be treated as conditional probability p(y|x) = N(y;y,1)
Maximizing log-likelihood is equivalent to minimizing mean square error
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Sigmoid unit

e Mostly suited for binary classification problem that is Bernoulli output distribution
e The neural networks need to predict p(y = 1|x)

e If linear unit has been chosen, p(y = 1|x) = max {O, min{1, WTh + b}}

o Gradient?
e Model should have strong gradient whenever the answer is wrong
e Let us assume unnormalized log probability is linear with z = W ™h + b

exp(yz)

Zy/E{OJ} exp(y'z)

e Therefore, log /5(y) =yz = /5()/) =exp(yz) = P(y) =

e It can be written as P(y) = o((2y — 1)z))
e The loss function for maximum likelihood is

J(0) = —log P(y|x) = —logo((2y — 1)z) = (((1 — 2y)z)
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Softmax unit

e Similar to sigmoid. Mostly suited for multinoulli distribution
e \We need to predict a vector y such that y, = P(Y = i|x)
e A linear layer predicts unnormalized probabilities z = W " h+b that is z; = log ﬁ(y =

i|x)

exp z;
e Formally, softmax(z); = =————
&)= 5 enlz)
e Log in log-likelihood can undo exp log softmax(z) — log E exp(z;)

e Does it saturate?
e What about incorrect prediction?

e Invariant to addition of some scalar to all input variables ie.
softmax(z) = softmax(z + ¢)
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Hidden units

Active area of research and does not have good guiding theoretical principle
Usually rectified linear unit (ReLU) is chosen in most of the cases
Design process consists of trial and error, then the suitable one is chosen

Some of the activation functions are not differentiable (eg. ReLU)
e Still gradient descent performs well

o Neural network does not converge to local minima but reduces the value of cost function
to a very small value
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Generalization of RelLU

e RelU is defined as g(z) = max{0, z}

e Using non-zero slope, h; = g(z, a); = max(0, z;) + a; min(0, z)
e Absolute value rectification will make o; = —1 and g(z) = ||

e Leaky RelU assumes very small values for «;

e Parametric Rel U tries to learn «; parameters

e Maxout unit g(z); = max z
jeGH)
e Suitable for learning piecewise linear function
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Logistic sigmoid & hyperbolic tangent

e Logistic sigmoid g(z) = o(z)

e Hyperbolic tangent g(z) = tanh(z)
e tanh(z) =20(2z) — 1

e Widespread saturation of sigmoidal unit is an issue for gradient based learning
e Usually discouraged to use as hidden units

e Usually, hyperbolic tangent function performs better where sigmoidal function must
be used
e Behaves linearly at 0

e Sigmoidal activation function are more common in settings other than feedforward net-
work
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Other hidden units

e Differentiable functions are usually preferred
e Activation function h = cos(Wx + b) performs well for MNIST data set
e Sometimes no activation function helps in reducing the number of parameters
e Radial Basis Function - ¢(x, c) = ¢(||[x — c||)
e Gaussian - exp(—(cr)?)
e Softplus - g(x) = ((x) = log(1 + exp(x))
e Hard tanh - g(x) = max(—1, min(1, x))
e Hidden unit design is an active area of research
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Architecture design

e Structure of neural network (chain based architecture)
e Number of layers
e Number of units in each layer
o Connectivity of those units

e Single hidden layer is sufficient to fit the training data
e Often deeper networks are preferred
e Fewer number of units

e Fewer number of parameters
¢ Difficult to optimize
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Back propagation

In a feedforward network, an input x is read and produces an output y
e This is forward propagation

During training forward propagation continues until it produces cost J(0)

Back-propagation algorithm allows the information to flow backward in the network
to compute the gradient

Computation of analytical expression for gradient is easy

We need to find out gradient of the cost function with respect to the parameters ie.
VeJ(0)
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Computational graph
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Chain rule of calculus

e Back-propagation algorithm heavily depends on it

e Let x be a real number and y = g(x) and z = f(g(x)) = f(y)

Chain rule says dz _ dzdy
in ru — = ——
y dx  dy dx
This can be generalized: Let x ¢ R, y e R", g : R™ — R" and f : R — R and

y =g(x) and z = f(y) 0
Z 0Yj
OX, z dy; 0x;

In vector notation it will be where % is the n X m Jacobian matrix of g

Viyz = O—y TVz
>\ ox Y
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Application of chain rule

e Let us consider u(” be the loss quantity. Need to find out the gradient for this.
o Let u™ to ul") are the inputs
e Therefore, we wish to compute ?)Z((J) where i =1,2,....n;

Let us assume the nodes are ordered so that we can compute one after another
Each u() is associated with an operation () ie. u() = f(A()
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Algorithm for forward pass

for i=1,... n do
u(i) — X

end for

fori=n;+1,...,ndo
AW — (40| € Pa(ul)}
u  FO(AM)

end for

return u("
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Algorithm for backward pass

grad_table[u()] « 1
for j = n—1down to 1 do
grad_table[ul)] « ji: grad_table[u()]
ijePa(uli)
end for
return grad_table

oul)
oul)
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Computational graph & subexpression
e We have x = f(w), y = f(x), z=f(y)
0z
ow
0z dy Ox

dy Ox Ow
= f'y)f'(x)f'(w)

= FFEW))F(F(w))f (w)

—©

=)=

IIT Patna

40




Forward propagation in MLP

e Input
° h(O) =X
e Computation for each layer k =1,...,/

o« 20 — B L Wk ptk-1)
o h(K) — f(a(k))

e Computation of output and loss function
o y=h"
. J=L(7,y) +20(0)
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Backward computation in MLP

e Compute gradient at the output
¢ 8 VyJ=V;L(y,y)
e Convert the gradient at output layer into gradient of pre-activation
o« g+ V,wl=gof(ak)
e Compute gradient on weights and biases
o Vot =8+ /\Vb(k)Q(Q)
o Vivid = gh“ D7 £ AV 10 Q(0)
e Propagate the gradients wrt the next lower level activation
o« g+ Viyuny=wWWTg
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Computation of derivatives

e Takes a computational graph and a set of numerical values for the inputs, then return
a set of numerical values

e Symbol-to-number differentiation
e Torch, Caffe

e Takes computational graph and add additional nodes to the graph that provide sym-
bolic description of derivative

e Symbol-to-symbol derivative
e Theano, TensorFlow
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Back propagation
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Back propagation
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Back propagation
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Back propagation

f1°(x)

£2'(x)

f1

f2

£1(x)+£2(x)
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Back propagation

F1°(x)+£2°(x)

f1

f2

IIT Patna

49




Example
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