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Machine Learning

e A form of applied statistics with
e Increased emphasis on the use of computers to statistically estimate complicated function
e Decreased emphasis on proving confidence intervals around these functions

e Two primary approaches

e Frequentist estimators
e Bayesian inference
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Types of Machine Learning Problems

e Supervised
e Unsupervised
e Other variants

o Reinforcement learning
e Semi-supervised

IIT Patna




Learning algorithm

e A ML algorithm is an algorithm that is able to learn from data
e Mitchelle (1997)

e A computer program is said to learn from experience E with respect to some class of task
T and performance measure P, if its performance at task in T as measured by P, improves
with experience E.
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Task

e A ML tasks are usually described in terms of how ML system should process an example

e Example is a collection of features that have been quantitatively measured from some
objects or events that we want the learning system process

e Represented as x € R” where x; is a feature
e Feature of an image — pixel values
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Common ML Task

e Classification
e Need to predict which of the k categories some input belong to
e Need to have a function f : R” — {1,2,... k}

y = f(x) input x is assigned category identified by y

Examples

e Object identification

e Face recognition

e Regression

e Need to predict numeric value for some given input
e Need to have a function f : R” - R
o Examples

e Energy consumption

e Amount of insurance claim
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Common ML Task (contd.)

e Classification with missing inputs
e Need to have a set of functions

e Each function corresponds to classifying x with different subset of inputs missing
e Examples

e Medical diagnosis (expensive or invasive)
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e Classification with missing inputs
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e Each function corresponds to classifying x with different subset of inputs missing
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e Transcription

o Need to convert relatively unstructured data into discrete, textual form
e Optical character recognition
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Common ML Task (contd.)

e Classification with missing inputs
e Need to have a set of functions

e Each function corresponds to classifying x with different subset of inputs missing
e Examples

e Medical diagnosis (expensive or invasive)
e Transcription

o Need to convert relatively unstructured data into discrete, textual form

e Optical character recognition
e Speech recognition

e Machine translation

e Conversion of sequence of symbols in one language to some other language
e Natural language processing (English to Spanish conversion)
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Common ML Task (contd.)

e Structured output
e Output is a vector with important relationship between the different elements

e Mapping natural language sentence into a tree that describes grammatical structure
e Pixel based image segmentation (eg. identify roads)
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Common ML Task (contd.)

e Structured output
e Output is a vector with important relationship between the different elements
e Mapping natural language sentence into a tree that describes grammatical structure
e Pixel based image segmentation (eg. identify roads)
e Anamoly detection
e Observes a set of events or objects and flags if some of them are unusual
e Fraud detection in credit card
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Common ML Task (contd.)

e Structured output
e Output is a vector with important relationship between the different elements

e Mapping natural language sentence into a tree that describes grammatical structure
e Pixel based image segmentation (eg. identify roads)

e Anamoly detection
e Observes a set of events or objects and flags if some of them are unusual
e Fraud detection in credit card
e Synthesis and sampling
o Generate new example similar to past examples

e Useful for media application
e Text to speech
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Performance measure

e Accuracy is one of the key measures

e The proportion of examples for which the model produces correct outputs
e Similar to error rate

e Error rate often referred as expected 0-1 loss
e Mostly interested how ML algorithm performs on unseen data

e Choice of performance measure may not be straight forward
e Transcription

e Accuracy of the system at transcribing entire sequence
e Any partial credit for some elements of the sequence are correct

IIT Patna 10




Experience

e Kind of experience allowed during learning process

e Supervised
e Unsupervised
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Supervised learning

e Allowed to use labeled dataset
e Example — lIris

e Collection of measurements of different parts of Iris plant

e Each plant means each example
e Features

e Sepal length/width, petal length/width
e Also record which species the plant belong to
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Supervised learning (contd.)

e A set of labeled examples (x1, %2, ..., Xy, ¥)

e X; are input variables

e y output variable
e Need to find a function f : Xy x Xo x ... X, = Y
e Goal is to minimize error/loss function

e Like to minimize over all dataset
o We have limited dataset
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Unsupervised learning

e Learns useful properties of the structure of data set
e Unlabeled data

e Tries to learn entire probability distribution that generated the dataset
e Examples

e Clustering, dimensionality reduction
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Supervised vs Unsupervised learning

e Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)

e Supervised tries to predict y from x ie. p(y|x)
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Supervised vs Unsupervised learning

e Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
e Supervised tries to predict y from x ie. p(y|x)
e Unsupervised learning can be decomposed as supervised learning

e Solving supervised learning using traditional unsupervised learning

o)~ PxY)
p(y|x) 5

y P(x,y')
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Linear regression

e Prediction of the value of a continuous variable
e Example — price of a house, solar power generation in photo-voltaic cell, etc.
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Linear regression

e Prediction of the value of a continuous variable

e Example — price of a house, solar power generation in photo-voltaic cell, etc.
e Takes a vector x € R" and predict scalar y € R
e Predicted value will be represented as y = w ' x where w is a vector of parameters

e X; receives positive weight — Increasing the value of the feature will increase the value of y
e Xx; receives negative weight — Increasing the value of the feature will decrease the value of y
e Weight value is very high/large — Large effect on prediction
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Performance

e Assume, we have m examples not used for training
e This is known as test set
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Performance

e Assume, we have m examples not used for training
e This is known as test set

e Design matrix of inputs is X () and target output is a vector y(tst)
e Performance is measured by Mean Square Error (MSE)

MSE (test) = % Z (y(tESt) - y(teSt))f =

1

% Hy(test) - y(test) ||S

e Error increases when the Euclidean distance between target and prediction increases
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Performance

e Assume, we have m examples not used for training
e This is known as test set

e Design matrix of inputs is X () and target output is a vector y(tst)
e Performance is measured by Mean Square Error (MSE)

MSE (test) = % Z (y(teSt) - y(teSt))f =

1

1 -~ (test test) |2

~ gt ytee)3

m

e Error increases when the Euclidean distance between target and prediction increases

e The learning algorithm is allowed to gain experience from training set (X (tr2in) y (train))
e One of the common ideas is to minimize MSE 4.i,) for training set
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Minimization of MSE

e We have the following now

vvv'\/lSE(train) =0
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Minimization of MSE

e We have the following now

vW'\/|SE(train) =0
= leHy(train) o y(train)H% -0
%VWHX(train)W _ y(train)H% -0
= VW(X(train)W _ y(train))T(X(train)W - y(train))

Y

=0
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Minimization of MSE

e We have the following now

R

vm/'\/lSE(train) =0

vwi”y(train) _ y(train)H% =0

%VWHX(train)W _ y(train)H% =0
VW(X(train)W _ y(train))T(X(train)W _ y(train))
vw( WTx(train)Tx(train) w — 2WTx(train)Ty(train)

=0

_ y(train) Ty(train))

=0
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Minimization of MSE

e We have the following now

A

VwMSE (train) = 0

Vi[9 -y —

LY, X — y i) |2 = 0

¥, (X (train) g (rain) T x (train) yyy g (train))
¥, (w T X (Eaim) T X (tr2in) ) 9y T X (train) T y (train)
DX (train) T ¢ (train) yy, _ 9 X (train) Ty (train) _ ()

=0

_ y(train) Ty(train))

=0
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Minimization of MSE

e We have the following now

I R e

VwMSE (train) = 0

Vi[9 -y —

LY, X — y i) |2 = 0

¥, (X (train) g (rain) T x (train) yyy g (train))
¥, (w T X (Eaim) T X (tr2in) ) 9y T X (train) T y (train)
DX (train) T ¢ (train) yy, _ 9 X (train) Ty (train) _ ()

w = (X (ain) T X (train)) =1 x (train) y (train)

=0

_ y(train) Ty(train))

=0
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Minimization of MSE

e We have the following now

vW'VlSE(train) =0

= Vud]gn - ytmz — o

= AV X0 -yt = o

= VW(X(train)W o y(train))T(X(train)W o y(train)) =0

=V, (w7 X T X (wrain) 0y T X (train) Ty (train) _ y (erain) Ty (train)) —
= 2X(train)TX(train)W o 2X(train)Ty(train) =0

= w= (X(train)Tx(train))—1x(train)y(train)

e Linear regression with bias term

y=[w" w]x 1]"
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Moore-Penrose Pseudoinverse

o Let Ac R™™

e Every A has pseudoinverse A™ € R™*" and it is unique
e AATA=A
e ATAAT = AT
.« (AAH)T = AA*
. (ATA)T = A*A
e AT =(ATA)1AT
e Example
o IfA=[1 2]7 then At =[] 2]

1 2
0.121212 0.515152 —0.151515
— +
- IPA= h é ] then AT = [ 0.030303 —0.121212 0.212121
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Regression example
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Regression example
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Minimization of MSE: Gradient descent

o Assuming MSE(iain) = J(w1, w»)
e Target is to min J(wy, wy)

w1, W2
e Approach
e Start with some wy, wy

e Keep modifying wi, wy so that J(wi, wy) reduces till the desired accuracy is achieved
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Minimization of MSE: Gradient descent

o Assuming MSE(iain) = J(w1, w»)
e Target is to min J(wy, w)

wi,Wp
e Approach
e Start with some wy, w»
e Keep modifying wi, wy so that J(wi, wy) reduces till the desired accuracy is achieved
e Algorithm
e Repeat the following until convergence
0

wj = wj — 5 -J(w1, weo)
J
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Error

e Training error - Error obtained on a training set
e Generalization error - Error on unseen data
e Data assumed to be independent and identically distributed (iid)

e Each data set are independent of each other
e Train and test data are identically distributed

e Expected training and test error will be the same

e It is more likely that the test error is greater than or equal to the expected value of
training error

e Target is to make the training error is small. Also, to make the gap between training
and test error smaller
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Regression
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Regression example: degree 1
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Regression
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Regression
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Regression example: degree 4
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Regression example: degree 5
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Regression
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Underfitting & Overfitting

e Underfitting

e When the model is not able to obtain sufficiently low error value on the training set
e Overfitting

e When the gap between training set and test set error is too large
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Underfitting example
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Overfitting example
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Better fit
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Capacity

e Ability to fit wide variety of functions

e Low capacity will struggle to fit the training set

e High capacity will can overfit by memorizing the training set
e Capacity can be controlled by choosing hypothesis space

e A polynomial of degree 1 gives linear regression y = b + wx

e By adding x? term, it can learn quadratic curve y = b + wix + wox?

e Output is still a linear function of parameters

e Capacity of is determined by the choice of model (Representational capacity)
e Finding best function is very difficult optimization problem

e Learning algorithm does not find the best function but reduces the training error

e Imperfection in optimization algorithm can further reduce the capacity of model (effective
capacity)
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Capacity (contd.)

e Occam's razor
e Among equally well hypotheses, choose the simplest one
e Vapnik-Chervonenski dimension - Capacity for binary classifier
o Largest possible value of m for which a training set of m different x point that the classifier
can label arbitrarily
e Training and test error is bounded from above by a quantity that grows as model
capacity grows but shrinks as the number of training example increases

e Bounds are usually provided for ML algorithm and rarely provided for DL

o Capacity of deep learning model is difficult as the effective capacity is limited by opti-
mization algorithm

e Little knowledge on non-convex optimization
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