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Feature Engineering
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Machine Learning

• A form of applied statistics with

• Increased emphasis on the use of computers to statistically estimate complicated function
• Decreased emphasis on proving confidence intervals around these functions

• Two primary approaches

• Frequentist estimators
• Bayesian inference
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Types of Machine Learning Problems

• Supervised

• Unsupervised

• Other variants

• Reinforcement learning
• Semi-supervised
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Learning algorithm

• A ML algorithm is an algorithm that is able to learn from data

• Mitchelle (1997)

• A computer program is said to learn from experience E with respect to some class of task
T and performance measure P, if its performance at task in T as measured by P, improves
with experience E.
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Task

• A ML tasks are usually described in terms of how ML system should process an example

• Example is a collection of features that have been quantitatively measured from some
objects or events that we want the learning system process

• Represented as x ∈ Rn where xi is a feature
• Feature of an image — pixel values
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Common ML Task

• Classification

• Need to predict which of the k categories some input belong to
• Need to have a function f : Rn → {1, 2, . . . , k}
• y = f (x) input x is assigned category identified by y
• Examples

• Object identification
• Face recognition

• Regression

• Need to predict numeric value for some given input
• Need to have a function f : Rn → R
• Examples

• Energy consumption
• Amount of insurance claim
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Common ML Task (contd.)

• Classification with missing inputs

• Need to have a set of functions
• Each function corresponds to classifying x with different subset of inputs missing
• Examples

• Medical diagnosis (expensive or invasive)

• Transcription
• Need to convert relatively unstructured data into discrete, textual form

• Optical character recognition
• Speech recognition

• Machine translation
• Conversion of sequence of symbols in one language to some other language

• Natural language processing (English to Spanish conversion)
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Common ML Task (contd.)

• Structured output
• Output is a vector with important relationship between the different elements

• Mapping natural language sentence into a tree that describes grammatical structure
• Pixel based image segmentation (eg. identify roads)

• Anamoly detection
• Observes a set of events or objects and flags if some of them are unusual

• Fraud detection in credit card

• Synthesis and sampling
• Generate new example similar to past examples

• Useful for media application
• Text to speech
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Performance measure

• Accuracy is one of the key measures

• The proportion of examples for which the model produces correct outputs
• Similar to error rate

• Error rate often referred as expected 0-1 loss

• Mostly interested how ML algorithm performs on unseen data

• Choice of performance measure may not be straight forward
• Transcription

• Accuracy of the system at transcribing entire sequence
• Any partial credit for some elements of the sequence are correct
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Experience

• Kind of experience allowed during learning process

• Supervised
• Unsupervised
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Supervised learning

• Allowed to use labeled dataset

• Example — Iris

• Collection of measurements of different parts of Iris plant
• Each plant means each example
• Features

• Sepal length/width, petal length/width
• Also record which species the plant belong to
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Supervised learning (contd.)

• A set of labeled examples 〈x1, x2, . . . , xn, y〉
• xi are input variables
• y output variable

• Need to find a function f : X1 × X2 × . . .Xn → Y

• Goal is to minimize error/loss function

• Like to minimize over all dataset
• We have limited dataset
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Unsupervised learning

• Learns useful properties of the structure of data set

• Unlabeled data

• Tries to learn entire probability distribution that generated the dataset
• Examples

• Clustering, dimensionality reduction
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Supervised vs Unsupervised learning

• Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)

• Supervised tries to predict y from x ie. p(y |x)

• Unsupervised learning can be decomposed as supervised learning

p(x) =
n∏

i=1

p(xi |x1, x2, . . . , xi−1)

• Solving supervised learning using traditional unsupervised learning

p(y |x) =
p(x , y)∑
y ′ p(x , y ′)
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Linear regression

• Prediction of the value of a continuous variable

• Example — price of a house, solar power generation in photo-voltaic cell, etc.

• Takes a vector x ∈ Rn and predict scalar y ∈ R
• Predicted value will be represented as ŷ = wTx where w is a vector of parameters

• xi receives positive weight — Increasing the value of the feature will increase the value of y
• xi receives negative weight — Increasing the value of the feature will decrease the value of y
• Weight value is very high/large — Large effect on prediction



IIT Patna 16

Linear regression

• Prediction of the value of a continuous variable

• Example — price of a house, solar power generation in photo-voltaic cell, etc.

• Takes a vector x ∈ Rn and predict scalar y ∈ R
• Predicted value will be represented as ŷ = wTx where w is a vector of parameters
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Performance

• Assume, we have m examples not used for training

• This is known as test set

• Design matrix of inputs is X (test) and target output is a vector y (test)

• Performance is measured by Mean Square Error (MSE)

MSE(test) =
1

m

∑
i

(
ŷ (test) − y (test)

)2
i

=
1

m
‖ŷ (test) − y (test)‖22

• Error increases when the Euclidean distance between target and prediction increases

• The learning algorithm is allowed to gain experience from training set (X (train), y (train))

• One of the common ideas is to minimize MSE(train) for training set
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Minimization of MSE

• We have the following now

∇wMSE(train) = 0

⇒ ∇w
1
m
‖ŷ (train) − y (train)‖22 = 0

⇒ 1
m
∇w‖X (train)w − y (train)‖22 = 0

⇒ ∇w (X (train)w − y (train))T (X (train)w − y (train)) = 0

⇒ ∇w (wTX (train)TX (train)w − 2wTX (train)Ty (train) − y (train)Ty (train)) = 0

⇒ 2X (train)TX (train)w − 2X (train)Ty (train) = 0

⇒ w = (X (train)TX (train))−1X (train)y (train)

• Linear regression with bias term

ŷ = [wT w0][x 1]T
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Moore-Penrose Pseudoinverse

• Let A ∈ Rn×m

• Every A has pseudoinverse A+ ∈ Rm×n and it is unique

• AA+A = A

• A+AA+ = A+

• (AA+)T = AA+

• (A+A)T = A+A

• A+ = (ATA)−1AT

• Example

• If A = [1 2]T then A+ = [15
2
5 ]

• If A =

 1 2
2 1
1 5

 then A+ =

[
0.121212 0.515152 −0.151515
0.030303 −0.121212 0.212121

]
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Regression example
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Minimization of MSE: Gradient descent

• Assuming MSE(train) = J(w1,w2)

• Target is to min
w1,w2

J(w1,w2)

• Approach

• Start with some w1,w2

• Keep modifying w1,w2 so that J(w1,w2) reduces till the desired accuracy is achieved

• Algorithm

• Repeat the following until convergence

wj = wj −
∂

∂wj
J(w1,w2)
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Example
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Error

• Training error - Error obtained on a training set

• Generalization error - Error on unseen data

• Data assumed to be independent and identically distributed (iid)

• Each data set are independent of each other
• Train and test data are identically distributed

• Expected training and test error will be the same

• It is more likely that the test error is greater than or equal to the expected value of
training error

• Target is to make the training error is small. Also, to make the gap between training
and test error smaller



IIT Patna 27

Regression example
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Regression example: degree 1
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Regression example: degree 2
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Regression example: degree 3
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Regression example: degree 4
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Regression example: degree 5
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Regression example: degree 6
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Underfitting & Overfitting

• Underfitting

• When the model is not able to obtain sufficiently low error value on the training set

• Overfitting

• When the gap between training set and test set error is too large
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Example
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Underfitting example
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Overfitting example
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Better fit
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Capacity

• Ability to fit wide variety of functions

• Low capacity will struggle to fit the training set
• High capacity will can overfit by memorizing the training set

• Capacity can be controlled by choosing hypothesis space

• A polynomial of degree 1 gives linear regression ŷ = b + wx
• By adding x2 term, it can learn quadratic curve ŷ = b + w1x + w2x

2

• Output is still a linear function of parameters

• Capacity of is determined by the choice of model (Representational capacity)

• Finding best function is very difficult optimization problem

• Learning algorithm does not find the best function but reduces the training error
• Imperfection in optimization algorithm can further reduce the capacity of model (effective

capacity)
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Capacity (contd.)

• Occam’s razor

• Among equally well hypotheses, choose the simplest one

• Vapnik-Chervonenski dimension - Capacity for binary classifier

• Largest possible value of m for which a training set of m different x point that the classifier
can label arbitrarily

• Training and test error is bounded from above by a quantity that grows as model
capacity grows but shrinks as the number of training example increases

• Bounds are usually provided for ML algorithm and rarely provided for DL
• Capacity of deep learning model is difficult as the effective capacity is limited by opti-

mization algorithm

• Little knowledge on non-convex optimization



Image source: Deep Learning Book
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Error vs Capacity
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Non-parametric model

• Parametric model learns a function described by a parameter vector

• Size of vector is finite and fixed

• Nearest neighbour regression

• Finds out the nearest entry in training set and returns the associated value as the predicted
one

• Mathematically, for a given point x , ŷ = yi where i = arg min ‖Xi ,: − x‖22
• Wrapping parametric algorithm inside another algorithm
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Bayes error

• Ideal model is an oracle that knows the true probability distribution for data generation

• Such model can make error because of noise
• Supervised learning

• Mapping of x to y may be stochastic
• y may be deterministic but x does not have all variables

• Error by an oracle in predicting from the true distribution is known as Bayes error
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Note

• Training and generalization error varies as the size of training set varies

• Expected generalization error can never increase as the number of training example
increases

• Any fixed parametric model with less than the optimal capacity will asymptote to an
error value that exceeds the Bayes error

• It is possible to have optimal capacity but have large gap between training and gen-
eralization error

• Need more training examples
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No free lunch

• Averaged over all possible data generating distribution, every classification algorithm
has same error rate when classifying unseen points

• No machine learning algorithm is universally any better than any other
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Regularization

• A set of preferences is applied to learning algorithm so that it perform well on a specific
task

• Weight decay - In linear regression, preference on the weights is introduced

• Sum of MSE and squared L2 norms of the weight is minimized ie.

J(w) = MSEtrain + λwTw

• λ = 0 - No preference
• λ becomes large - weight becomes smaller

• Regularization is intended to reduce test error not training error
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Example: Weight decay
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Hyperparameters

• Settings that are used to control the behavior of learning algorithm

• Degree of polynomial
• λ for decay weight

• Hyperparameters are usually not adapted or learned on the training set
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Validation set

• Test data should not be used to choose the model as well as hyperparameters

• Validation set is constructed from training set

• Typically 80% will be used for training and rest for validation

• Validation set may be used to train hyperparameters
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Cross validation

• Dividing data set into training and fixed test may result into small test set

• For large data this is not an issue

• For small data set use k-fold cross validation

• Partition the data in k disjoint subsets
• On i-th trial, i-th set used as the test set and rest are treated as training set
• Test error can be determined by averaging the test error across the k trials
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Point estimation

• To provide single best prediction of some quantity of interest

• Estimation of the relationship between input and output variables

• It can be single parameter or a vector of parameters

• Weights in linear regression

• Notation: true parameter — θ and estimate — θ̂

• Let {x (1), x (2), . . . , x (m)} be set of m independent and identically distributed point.

• A point estimator is a function θ̂m = g(x (1), x (2), . . . , x (m))

• Good estimator is a function whose output is close to θ
• θ is unknown but fixed
• θ̂ depends on data
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Bias

• Difference between this estimator’s expected value and the true value of the parameter
being estimated

• bias(θ̂m) = E(θ̂m)− θ

• An estimator will be said unbiased if bias(θ̂m) = 0

• E(θ̂m) = θ

• An estimator will be asymptotically unbiased if lim
m→∞

bias(θ̂m) = 0
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Estimator for Gaussian distribution

• Let us consider a set of samples {x (1), x (2), . . . , x (m)} that are independently and
identically distributed according to p(x (i)) = N (x (i);µ, σ2) ∀i = 1, 2, . . . ,m

• Gaussian mean estimator (also known as sample mean)

• µ̂m =
1

m

m∑
i=1

x (i)

• Bias of sample mean

bias(µ̂m) = E(µ̂m)− µ = E

(
1

m

m∑
i=1

x (i)

)
− µ =

(
1

m

m∑
i=1

E
(
x (i)
))
− µ

=

(
1

m

m∑
i=1

µ

)
− µ = µ− µ = 0
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Estimator for Gaussian distribution (cont)

• Sample variance

• σ̂2m =
1

m

m∑
i=1

(x (i) − µ̂m)2

• Bias of sample variance bias(σ̂2
m) = E(σ̂2

m)− σ2

• It can be shown that, E(σ̂2
m) =

m − 1

m
σ2
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Estimator for Gaussian distribution (cont)
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Trade off Bias and Variance

• Bias — Expected deviation from the true value of the function parameter

• Variance — Measure of deviation from the expected estimator value

• Choice of estimator — large bias or large variance?

• Use cross-validation
• Compare Mean Square Error

MSE = E(θ̂m − θ)2 = bias(θ̂m)2 + Var(θ̂m)



Image source: Deep Learning Book
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Trade off Bias and Variance (cont)
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Logistic regression

• Dependent variable is categorical

• Example: 〈Hours of study, pass/fail〉
• Output should lie between 0 and 1
• Similar to linear regression except the output is mapped between 0 and 1 ie.

p(y |x ,θ) = σ(θTx)

where σ(x) =
1

1 + exp(−x)
(Sigmoid function)
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Support Vector Machine

• One of the most influential approaches for supervised learning

• A simple linear model wTx + b similar to logistic regression but does not provide
probability

• Predict positive class when wTx + b is positive and vice-versa

• Kernel trick

wTx + b = b +
m∑
i=1

αix
Tx (i) = b +

m∑
i=1

αik(x , x (i))
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Challenges for Deep Learning

• Curse of dimensionality

• Local constancy and smoothness regularization

• Manifold learning


