Introduction to Deep Learning

Deep Feedforward Network

Arijit Mondal

Dept. of Computer Science & Engineering

Indian Institute of Technology Patna

arijit@iitp.ac.in

• Also known as feedforward neural network or multilayer perceptron

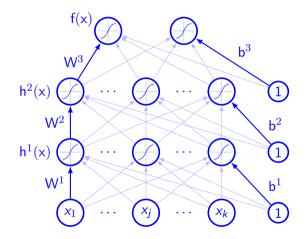
- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function *f**
 - For classifier, x is mapped to category y ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function f*
 - For classifier, x is mapped to category y ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation
- Information flows from input to intermediate to output
 - No feedback, directed acyclic graph
 - For general model, it can have feedback and known as recurrent neural network

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function *f**
 - For classifier, x is mapped to category y ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation
- Information flows from input to intermediate to output
 - No feedback, directed acyclic graph
 - For general model, it can have feedback and known as recurrent neural network
 - Typically it represents composition of functions
 - Three functions $f^{(1)}, f^{(2)}, f^{(3)}$ are connected in chain
 - Overall function realized is $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$
 - The number of layers provides the depth of the model

- Also known as feedforward neural network or multilayer perceptron
- Goal of such network is to approximate some function *f**
 - For classifier, x is mapped to category y ie. $y = f^*(x)$
 - A feedforward network maps $y = f(x; \theta)$ and learns θ for which the result is the best function approximation
- Information flows from input to intermediate to output
 - No feedback, directed acyclic graph
 - For general model, it can have feedback and known as recurrent neural network
 - Typically it represents composition of functions
 - Three functions $f^{(1)}, f^{(2)}, f^{(3)}$ are connected in chain
 - Overall function realized is $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$
 - The number of layers provides the depth of the model
- Goal of NN is not to model brain accurately!

Multilayer neural network



Issues with linear FFN

- Fit well for linear and logistic regression
- Convex optimization technique may be used
- Capacity of such function is limited
- Model cannot understand interaction between any two variables

• Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?
 - Use a very generic ϕ of high dimension
 - Enough capacity but may result in poor generalization
 - Very generic feature mapping usually based on principle of local smoothness
 - Do not encode enough prior information

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?
 - Use a very generic ϕ of high dimension
 - Enough capacity but may result in poor generalization
 - Very generic feature mapping usually based on principle of local smoothness
 - Do not encode enough prior information
 - Manually design ϕ
 - Require domain knowledge

- Transform x (input) into $\phi(x)$ where ϕ is nonlinear transformation
- How to choose ϕ ?
 - Use a very generic ϕ of high dimension
 - Enough capacity but may result in poor generalization
 - Very generic feature mapping usually based on principle of local smoothness
 - Do not encode enough prior information
 - Manually design ϕ
 - Require domain knowledge
 - Strategy of deep learning is to learn ϕ

Goal of deep learning

- We have a model $y = f(x; \theta, w) = \phi(x; \theta)^T w$
- We use ${\pmb heta}$ to learn ϕ
- w and ϕ determines the output. ϕ defines the hidden layer
- It looses the convexity of the training problem but benefits a lot
- Representation is parameterized as $\phi(\mathsf{x}, \boldsymbol{\theta})$
 - heta can be determined by solving optimization problem
- Advantages
 - ϕ can be very generic
 - Human practitioner can encode their knowledge to designing $\phi(\mathsf{x}; \boldsymbol{\theta})$

Design issues of feedforward network

- Choice of optimizer
- Cost function
- The form of output unit
- Choice of activation function
- Design of architecture number of layers, number of units in each layer
- Computation of gradients

Example

- Let us choose XOR function
- Target function is $y = f^*(x)$ and our model provides $y = f(x; \theta)$
- Learning algorithm will choose the parameters $oldsymbol{ heta}$ to make f close to f^*

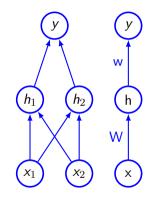
Example

- Let us choose XOR function
- Target function is $y = f^*(x)$ and our model provides $y = f(x; \theta)$
- Learning algorithm will choose the parameters $oldsymbol{ heta}$ to make f close to f^*
- Target is to fit output for $X = \{[0, 0]^T, [0, 1]^T, [1, 0]^T, [1, 1]^T\}$
- This can be treated as regression problem and MSE error can be chosen as loss function $(J(\theta) = \frac{1}{4} \sum_{x \in X} (f^*(x) f(x; \theta))^2)$
- We need to choose $f(x; \theta)$ where θ depends on w and b
- Let us consider a linear model $f(x; w, b) = x^T w + b$

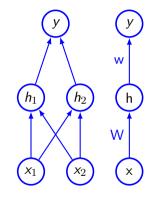
Example

- Let us choose XOR function
- Target function is $y = f^*(x)$ and our model provides $y = f(x; \theta)$
- Learning algorithm will choose the parameters $oldsymbol{ heta}$ to make f close to f^*
- Target is to fit output for $X = \{[0, 0]^T, [0, 1]^T, [1, 0]^T, [1, 1]^T\}$
- This can be treated as regression problem and MSE error can be chosen as loss function $(J(\theta) = \frac{1}{4} \sum_{x \in X} (f^*(x) f(x; \theta))^2)$
- We need to choose $f(x; \theta)$ where θ depends on w and b
- Let us consider a linear model $f(x; w, b) = x^T w + b$
- Solving these, we get w = 0 and $b = \frac{1}{2}$

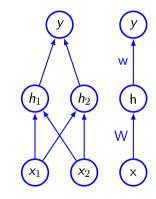
• Let us assume that the hidden unit h computes $f^{(1)}(x; W, c)$



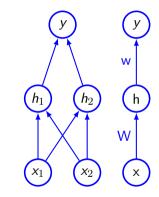
- Let us assume that the hidden unit h computes $f^{(1)}(x; W, c)$
- In the next layer $y = f^{(2)}(h; w, b)$ is computed



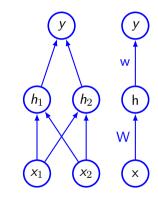
- Let us assume that the hidden unit h computes $f^{(1)}(x; W, c)$
- In the next layer $y = f^{(2)}(h; w, b)$ is computed
- Complete model $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$



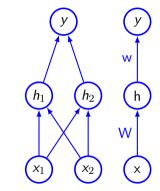
- Let us assume that the hidden unit h computes $f^{(1)}(x; W, c)$
- In the next layer $y = f^{(2)}(h; w, b)$ is computed
- Complete model $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$
- Suppose $f^{(1)}(\mathbf{x}) = \mathbf{W}^T \mathbf{x}$ and $f^2(\mathbf{h}) = \mathbf{h}^T \mathbf{w}$



- Let us assume that the hidden unit h computes $f^{(1)}(x; W, c)$
- In the next layer $y = f^{(2)}(h; w, b)$ is computed
- Complete model $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$
- Suppose $f^{(1)}(x) = W^T x$ and $f^2(h) = h^T w$ then $f(x) = w^T W^T x$



- We need to have nonlinear function to describe the features
- Usually NN have affine transformation of learned parameters followed by nonlinear activation function
- Let us use $h = g(W^T x + c)$
- Let us use ReLU as activation function $g(z) = \max\{0, z\}$
- g is chosen element wise $h_i = g(x^T W_{:,i} + c_i)$



• Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

Now we have

• X

CS551

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

Now we have $\mathbf{\mathfrak{g}} \quad \mathbf{\bullet} \ \mathsf{X} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix},$

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

Now we have $\mathbf{5} \bullet \mathbf{X} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, \mathbf{XW}$

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

• Now we have

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 2 \\ 2 & 2 \end{bmatrix}$,

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

Now we have

• X =
$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, XW = $\begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias c

- Complete network is $f(x; W, c, w, b) = w^T \max\{\overline{0, W^T x + c}\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

Now we have $\mathbf{S} \quad \bullet \ \mathsf{X} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, \mathsf{XW} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}, \text{ add bias c } \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix},$

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

Now we have **5** • X = $\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$, XW = $\begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$, add bias c $\begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, apply h

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

Now we have $\mathbf{S} \quad \mathbf{A} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, \\ \mathsf{XW} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}, \\ \mathsf{add \ bias \ c} \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}, \\ \mathsf{apply \ h} \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix},$

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 2 \\ 2 & 2 \end{bmatrix}$, add bias c $\begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, apply h $\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, multiply

with w

Now we have

- Complete network is $f(x; W, c, w, b) = w^T \max\{0, W^T x + c\} + b$
- A solution for XOR problem can be as follows

• W =
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, c = $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, w = $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, b = 0

•
$$X = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 2 \\ 2 & 2 \end{bmatrix}$, add bias c $\begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, apply h $\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$, multiply with w $\begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$

Now we have

Gradient based learning

- Similar to machine learning tasks, gradient descent based learning is used
 - Need to specify optimization procedure, cost function and model family
 - For NN, model is nonlinear and function becomes nonconvex
 - Usually trained by iterative, gradient based optimizer
- Solved by using gradient descent or stochastic gradient descent (SGD)

Gradient descent

- For a function y = f(x), derivative (slope at point x) of it is $f'(x) = \frac{dy}{dx}$
- A small change in the input can cause output to move to a value given by $f(x + \epsilon) \approx f(x) + \epsilon f'(x)$
- We need to take a jump so that *y* reduces (assuming minimization problem)
- We can say that $f(x \epsilon \operatorname{sign}(f'(x)))$ is less than f(x)
- For multiple inputs partial derivatives are used ie. $\frac{\partial}{\partial x_i} f(x)$
- Gradient vector is represented as $\nabla_{\mathsf{x}} f(\mathsf{x})$
- Gradient descent proposes a new point as $x' = x \epsilon \nabla_x f(x)$ where ϵ is the learning rate

CS551

Stochastic gradient descent

- Large training set are necessary for good generalization
- Cost function used for optimization is $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$
- Gradient descent requires $\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$

Stochastic gradient descent

- Large training set are necessary for good generalization
- Cost function used for optimization is $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$
- Gradient descent requires $\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$
 - Computation cost is O(m)

Stochastic gradient descent

- Large training set are necessary for good generalization
- Cost function used for optimization is $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$
- Gradient descent requires $\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \theta)$
 - Computation cost is O(m)
- For SGD, gradient is an expectation estimated from a small sample known as minibatch ($\mathbb{B} = \{x^{(1)}, \dots, x^{(m')}\}$)
- Estimated gradient is $g = \frac{1}{m'} \sum_{i=1}^{m'} \nabla_{\theta} L(x^{(i)}, y^{(i)}, \theta)$
- New point will be $oldsymbol{ heta} = oldsymbol{ heta} \epsilon {
 m g}$

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $x(w \times x y)$

Step	Point	Derivative	New w

CS551

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $x(w \times x y)$

Step 1	Derivative 1*(4.0*1-2)=2.0	New w 3.80	

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $x(w \times x y)$

Step	Point	Derivative	New w
1	(1,2)	1*(4.0*1-2)=2.0	3.80
2	(2, 4)	2*(3.8*2-4)=7.2	3.08

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $x(w \times x y)$

Point	Derivative	New w
(1,2)	1*(4.0*1-2)=2.0	3.80
(2, 4)	2*(3.8*2-4)=7.2	3.08
(3,6)	3*(3.1*3-6)=9.7	2.11
(4,8)	4*(2.1*4-8)=1.7	1.94
(1,2)	1*(1.9*1-2)=-0.1	1.94
(2,4)	2*(1.9*2-4)=-0.2	1.97
(3,6)	3*(2.0*3-6)=-0.3	1.99
(4,8)	4*(2.0*4-8)=-0.1	2.00
(4,8)	1*(2.0*1-2)=0.0	2.00
	<pre>(1,2) (2,4) (3,6) (4,8) (1,2) (2,4) (3,6) (4,8)</pre>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $\frac{1}{4} \sum_{i} x_i (w \times x_i y_i)$

Step Derivative New w

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $\frac{1}{4} \sum_{i} x_i (w \times x_i y_i)$

Step	Derivative	New w
1	15	2.5

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $\frac{1}{4} \sum_{i} x_i (w \times x_i y_i)$

Step	Derivative	New w
1	15	2.5
2	3.75	2.13

- Consider the following pair (x, y) of points (1, 2), (2, 4), (3, 6), (4, 8)
- Let us try to fit a curve as follows $y = w \times x$ where w is initialized with 4, learning rate as 0.1
- MSE as cost function. Derivative will be $\frac{1}{4} \sum_{i} x_i (w \times x_i y_i)$

Step	Derivative	New w
1	15	2.5
2	3.75	2.13
3	0.94	2.03
4	0.23	2.01
5	0.06	2.00

Cost function

- Similar to other parametric model like linear models
- Parametric model defines distribution $p(y|x; \theta)$
- Principle of maximum likelihood is used (cross entropy between training data and model prediction)
- Instead of predicting the whole distribution of y, some statistic of y conditioned on x is predicted
- It can also contain regularization term

- Consider a set of *m* examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$ drawn independently from the true but unknown data generating distribution $p_{data}(\mathbf{x})$
- Let $p_{model}(x; \theta)$ be a parametric family of probability distribution

- Consider a set of *m* examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$ drawn independently from the true but unknown data generating distribution $p_{data}(\mathbf{x})$
- Let $p_{model}(x; \theta)$ be a parametric family of probability distribution
- Maximum likelihood estimator for $oldsymbol{ heta}$ is defined as

$$\boldsymbol{\theta}_{ML} = rg\max_{\boldsymbol{\theta}} p_{model}(\mathbb{X}; \boldsymbol{\theta}) = rg\max_{\boldsymbol{\theta}} \prod_{i=1}^{m} p_{model}(\mathsf{x}^{(i)}; \boldsymbol{\theta})$$

- Consider a set of *m* examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$ drawn independently from the true but unknown data generating distribution $p_{data}(\mathbf{x})$
- Let $p_{model}(x; \theta)$ be a parametric family of probability distribution
- Maximum likelihood estimator for $oldsymbol{ heta}$ is defined as

$$\boldsymbol{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} p_{model}(\mathbb{X}; \boldsymbol{\theta}) = \arg \max_{\boldsymbol{\theta}} \prod_{i=1}^{m} p_{model}(\mathsf{x}^{(i)}; \boldsymbol{\theta})$$

It can be written as $\boldsymbol{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{m} \log p_{model}(\mathsf{x}^{(i)}; \boldsymbol{\theta})$

- Consider a set of *m* examples $\mathbb{X} = \{x^{(1)}, \dots, x^{(m)}\}$ drawn independently from the true but unknown data generating distribution $p_{data}(\mathbf{x})$
- Let $p_{model}(x; \theta)$ be a parametric family of probability distribution
- Maximum likelihood estimator for $oldsymbol{ heta}$ is defined as

$$oldsymbol{ heta}_{ML} = rg\max_{oldsymbol{ heta}} oldsymbol{p}_{model}(\mathbb{X};oldsymbol{ heta}) = rg\max_{oldsymbol{ heta}} \prod_{i=1}^m oldsymbol{p}_{model}(\mathsf{x}^{(i)};oldsymbol{ heta})$$

• It can be written as
$$\boldsymbol{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} \sum_{i=1} \log p_{model}(\mathbf{x}^{(i)}; \boldsymbol{\theta})$$

• By dividing *m* we get $\boldsymbol{\theta}_{ML} = rg \max_{\boldsymbol{\theta}} \mathbb{E}_{\mathsf{X} \sim p_{data}} \log p_{model}(\mathsf{x}; \boldsymbol{\theta})$

Maximum likelihood estimation (cont.)

• Minimizing dissimilarity between the empirical \hat{p}_{data} and model distribution p_{model} and it is measured by KL divergence

 $D_{\mathcal{KL}}(\hat{p}_{data} \| p_{model}) = \arg\min_{\theta} \mathbb{E}_{\mathsf{X} \sim \hat{p}_{data}} \left[\log \hat{p}_{data}(\mathsf{x}) - \log p_{model}(\mathsf{x}; \theta) \right]$

Maximum likelihood estimation (cont.)

• Minimizing dissimilarity between the empirical \hat{p}_{data} and model distribution p_{model} and it is measured by KL divergence

 $D_{\mathcal{KL}}(\hat{p}_{data} \| p_{model}) = \arg\min_{\boldsymbol{\theta}} \mathbb{E}_{\mathsf{X} \sim \hat{p}_{data}} \left[\log \hat{p}_{data}(\mathsf{x}) - \log p_{model}(\mathsf{x}; \boldsymbol{\theta}) \right]$

• We need to minimize $-\arg\min_{\boldsymbol{\theta}} \mathbb{E}_{\mathsf{X} \sim \hat{p}_{data}} \log p_{model}(\mathsf{x}; \boldsymbol{\theta})$

Conditional log-likelihood

- In most of the supervised learning we estimate $P(y|x; \theta)$
- If X be the all inputs and Y be observed targets then conditional maximum likelihood estimator is θ_{ML} = arg max_θ P(Y|X; θ)
- If the examples are assumed to be i.i.d then we can say

 $\boldsymbol{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{m} \log P(\mathbf{y}^{(i)} | \mathbf{x}^{(i)}; \boldsymbol{\theta})$

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)
- Let us assume, $p(y|\mathbf{x}) = \mathcal{N}(y; \hat{y}(\mathbf{x}; \mathbf{w}), \sigma^2)$

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)
- Let us assume, $p(y|\mathbf{x}) = \mathcal{N}(y; \hat{y}(\mathbf{x}; \mathbf{w}), \sigma^2)$
- Since the examples are assumed to be i.i.d, conditional log-likelihood is given by

 $\sum_{i=1}^{m} \log p(\mathbf{y}^{(i)} | \mathbf{x}^{(i)}; \boldsymbol{\theta})$

- Instead of producing single prediction \hat{y} for a given x, we assume the model produces conditional distribution p(y|x)
- For infinitely large training set, we can observe multiple examples having the same x but different values of y
- Goal is to fit the distribution p(y|x)
- Let us assume, $p(y|\mathbf{x}) = \mathcal{N}(y; \hat{y}(\mathbf{x}; \mathbf{w}), \sigma^2)$
- Since the examples are assumed to be i.i.d, conditional log-likelihood is given by $\sum_{i=1}^{m} \log p(\mathbf{y}^{(i)} | \mathbf{x}^{(i)}; \boldsymbol{\theta}) = -m \log \sigma - \frac{m}{2} \log(2\pi) - \sum_{i=1}^{m} \frac{\|\hat{\mathbf{y}}^{(i)} - \mathbf{y}^{(i)}\|^2}{2\sigma^2}$

CS551

Learning conditional distributions

- Usually neural networks are trained using maximum likelihood. Therefore the cost function is negative log-likelihood. Also known as cross entropy between training data and model distribution
- Cost function $J(\boldsymbol{ heta}) = -\mathbb{E}_{\mathsf{X},\mathsf{Y}\sim\hat{p}_{data}}\log p_{\textit{model}}(\mathsf{y}|\mathsf{x},\boldsymbol{ heta})$
- Uniform across different models
 - Gradient of cost function is very much crucial
 - Large and predictable gradient can serve good guide for learning process
 - Function that saturates will have small gradient
 - Activation function usually produces values in a bounded zone (saturates)
 - Negative log-likelihood can overcome some of the problems
 - Output unit having exp function can saturate for high negative value
 - Log-likelihood cost function undoes the exp of some output functions

- Instead of learning the whole distribution $p(y|x; \theta)$, we want to learn one conditional statistics of y given x
 - For a predicting function $f(x; \theta)$, we would like to predict the mean of y

- Instead of learning the whole distribution $p(y|x; \theta)$, we want to learn one conditional statistics of y given x
 - For a predicting function $f(x; \theta)$, we would like to predict the mean of y
- Neural network can represent any function *f* from a very wide range of functions
- Range of function is limited by features like continuity, boundedness, etc.

- Instead of learning the whole distribution $p(y|x; \theta)$, we want to learn one conditional statistics of y given x
 - For a predicting function $f(x; \theta)$, we would like to predict the mean of y
- Neural network can represent any function *f* from a very wide range of functions
- Range of function is limited by features like continuity, boundedness, etc.
- Cost function becomes functional rather than a function

• Need to solve the optimization problem

 $f^* = \arg\min_{f} \mathbb{E}_{\mathsf{X},\mathsf{Y}\sim p_{data}} \|\mathsf{y} - f(\mathsf{x})\|^2$

- Need to solve the optimization problem
 - $f^* = \arg\min_{f} \mathbb{E}_{\mathsf{X},\mathsf{Y}\sim \rho_{data}} \|\mathsf{y} f(\mathsf{x})\|^2$
- Using calculus of variation, it gives $f^*(\mathsf{x}) = \mathbb{E}_{\mathsf{Y} \sim p_{data}(\mathsf{y}|\mathsf{x})}[y]$
 - Mean of y for each value of x

- Need to solve the optimization problem
 - $f^* = \arg\min_{f} \mathbb{E}_{\mathsf{X},\mathsf{Y}\sim \rho_{data}} \|\mathsf{y} f(\mathsf{x})\|^2$
- Using calculus of variation, it gives $f^*(\mathsf{x}) = \mathbb{E}_{\mathsf{Y}\sim p_{data}(\mathsf{y}|\mathsf{x})}[y]$
 - Mean of y for each value of x
- Using a different cost function $f^* = \arg \min_{\epsilon} \mathbb{E}_{X, Y \sim p_{data}} \|y f(x)\|_1$

- Need to solve the optimization problem
 - $f^* = \arg\min_{f} \mathbb{E}_{\mathsf{X},\mathsf{Y}\sim \rho_{data}} \|\mathsf{y} f(\mathsf{x})\|^2$
- Using calculus of variation, it gives $f^*(\mathsf{x}) = \mathbb{E}_{\mathsf{Y}\sim p_{data}(\mathsf{y}|\mathsf{x})}[y]$
 - Mean of y for each value of x
- Using a different cost function $f^* = \arg\min_{\epsilon} \mathbb{E}_{X, Y \sim p_{data}} \|y f(x)\|_1$
 - Median of y for each value of x

Output units

- Choice of cost function is directly related with the choice of output function
- In most cases cost function is determined by cross entropy between data and model distribution
- Any kind of output unit can be used as hidden unit

Linear units

- Suited for Gaussian output distribution
- Given features h, linear output unit produces $\hat{y} = W^{\mathcal{T}} h + b$
- This can be treated as conditional probability $p(y|x) = \mathcal{N}(y; \hat{y}, I)$
- Maximizing log-likelihood is equivalent to minimizing mean square error

Sigmoid unit

- Mostly suited for binary classification problem that is Bernoulli output distribution
- The neural networks need to predict p(y = 1 | x)
 - If linear unit has been chosen, $p(y = 1 | \mathbf{x}) = \max \{0, \min\{1, \mathbf{W}^T \mathbf{h} + \mathbf{b}\}\}$
 - Gradient?
- Model should have strong gradient whenever the answer is wrong
- Let us assume unnormalized log probability is linear with $z = W^T h + b$
- Therefore, $\log \tilde{P}(y) = yz \Rightarrow \tilde{P}(y) = \exp(yz) \Rightarrow P(y) = \frac{\exp(yz)}{\sum_{y' \in \{0,1\}} \exp(y'z)}$
 - It can be written as $P(y) = \sigma((2y-1)z)$
- The loss function for maximum likelihood is $J(\theta) = -\log P(y|\mathbf{x}) = -\log \sigma((2y-1)z) = \zeta((1-2y)z)$

S551

Softmax unit

- Similar to sigmoid. Mostly suited for multinoulli distribution
- We need to predict a vector \hat{y} such that $\hat{y}_i = P(Y = i | \mathbf{x})$
- A linear layer predicts unnormalized probabilities $z = W^T h + b$ that is $z_i = \log \tilde{P}(y = i | x)$
- Formally, softmax $(z)_i = \frac{\exp z_i}{\sum_i \exp(z_i)}$
 - Log in log-likelihood can undo exp $\log \text{ softmax}(\mathsf{z})_i = z_i \log \sum \exp(z_j)$
 - Does it saturate?
 - What about incorrect prediction?
 - Invariant to addition of some scalar to all input variables ie. softmax(z) = softmax(z + c)

Hidden units

- Active area of research and does not have good guiding theoretical principle
- Usually rectified linear unit (ReLU) is chosen in most of the cases
- Design process consists of trial and error, then the suitable one is chosen
- Some of the activation functions are not differentiable (eg. ReLU)
 - Still gradient descent performs well
 - Neural network does not converge to local minima but reduces the value of cost function to a very small value

Generalization of ReLU

- ReLU is defined as $g(z) = \max\{0, z\}$
- Using non-zero slope, $h_i = g(z, \alpha)_i = \max(0, z_i) + \alpha_i \min(0, z_i)$
 - Absolute value rectification will make $\alpha_i = -1$ and g(z) = |z|
- Leaky ReLU assumes very small values for $lpha_i$
 - Parametric ReLU tries to learn $lpha_i$ parameters
 - Maxout unit $g(z)_i = \max_{i \in \mathbb{G}^{(i)}} z_j$
 - Suitable for learning piecewise linear function

Logistic sigmoid & hyperbolic tangent

- Logistic sigmoid $g(z) = \sigma(z)$
- Hyperbolic tangent g(z) = tanh(z)
 - $tanh(z) = 2\sigma(2z) 1$
- Widespread saturation of sigmoidal unit is an issue for gradient based learning
 - Usually discouraged to use as hidden units
- Usually, hyperbolic tangent function performs better where sigmoidal function must be used
 - Behaves linearly at 0
 - Sigmoidal activation function are more common in settings other than feedforward network

Other hidden units

- Differentiable functions are usually preferred
- Activation function $h = \cos(Wx + b)$ performs well for MNIST data set
 - Sometimes no activation function helps in reducing the number of parameters
- Radial Basis Function $\phi(\mathbf{x}, \mathbf{c}) = \phi(\|\mathbf{x} \mathbf{c}\|)$
 - Gaussian $\exp(-(\varepsilon r)^2)$
- Softplus $g(x) = \zeta(x) = \log(1 + exp(x))$
- Hard tanh $g(x) = \max(-1, \min(1, x))$
- Hidden unit design is an active area of research

Architecture design

- Structure of neural network (chain based architecture)
 - Number of layers
 - Number of units in each layer
 - Connectivity of those units
- Single hidden layer is sufficient to fit the training data
- Often deeper networks are preferred
 - Fewer number of units
 - Fewer number of parameters
 - Difficult to optimize

Thank you!

• Let us consider functional $J[y] = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$

- Let us consider functional $J[y] = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of x such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable

- Let us consider functional $J[y] = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + arepsilon \eta]$
 - η is an arbitrary function of x such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable
- Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \left. \frac{d\Phi}{d\varepsilon} \right|_{\varepsilon=0} = \int_{x_1}^{x_2} \left. \frac{dL}{d\varepsilon} \right|_{\varepsilon=0} dx$

- Let us consider functional $J[y] = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of x such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable

• Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \left. \frac{d\Phi}{d\varepsilon} \right|_{\varepsilon=0} = \int_{x_1}^{x_2} \left. \frac{dL}{d\varepsilon} \right|_{\varepsilon=0} dx = 0$

- Let us consider functional $J[y] = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of x such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable

• Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \left. \frac{d\Phi}{d\varepsilon} \right|_{\varepsilon=0} = \int_{x_1}^{x_2} \left. \frac{dL}{d\varepsilon} \right|_{\varepsilon=0} dx = 0$ • Now we can say, $\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial y} \frac{dy}{d\varepsilon} + \frac{\partial L}{\partial y'} \frac{dy'}{d\varepsilon}$

CS551

- Let us consider functional $J[y] = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of x such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable

• Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \left. \frac{d\Phi}{d\varepsilon} \right|_{\varepsilon=0} = \int_{x_1}^{x_2} \left. \frac{dL}{d\varepsilon} \right|_{\varepsilon=0} dx = 0$ • Now we can say, $\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial y} \frac{dy}{d\varepsilon} + \frac{\partial L}{\partial y'} \frac{dy'}{d\varepsilon}$

• As we have $y = f + \varepsilon \eta$ and $y' = f' + \varepsilon \eta'$, therefore, $\frac{dL}{d\varepsilon}$

- Let us consider functional $J[y] = \int_{x_1}^{x_2} L(x, y(x), y'(x)) dx$
- Let J[y] has local minima at f. Therefore, we can say $J[f] \leq J[f + \varepsilon \eta]$
 - η is an arbitrary function of x such that $\eta(x_1) = \eta(x_2) = 0$ and differentiable
- Let us assume $\Phi(\varepsilon) = J[f + \varepsilon \eta]$. Therefore, $\Phi'(0) \equiv \left. \frac{d\Phi}{d\varepsilon} \right|_{\varepsilon=0} = \int_{x_1}^{x_2} \left. \frac{dL}{d\varepsilon} \right|_{\varepsilon=0} dx = 0$ • Now we can say, $\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial y} \frac{dy}{d\varepsilon} + \frac{\partial L}{\partial y} \frac{dy'}{d\varepsilon}$

• As we have
$$y = f + \varepsilon \eta$$
 and $y' = f' + \varepsilon \eta'$, therefore, $\frac{dL}{d\varepsilon} = \frac{\partial L}{\partial y} \eta + \frac{\partial L}{\partial y'} \eta'$

CS551

• Now we have

$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \bigg|_{\varepsilon=0} dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f} \eta' \right) dx$$

• Now we have

$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \Big|_{\varepsilon=0} dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f} \eta' \right) dx \\ = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta - \eta \frac{d}{dx} \frac{\partial L}{\partial f} \right) dx + \frac{\partial L}{\partial f} \eta \Big|_{x_1}^{x_2}$$

• Now we have

$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \bigg|_{\varepsilon=0} dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f} \eta' \right) dx \\ = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta - \eta \frac{d}{dx} \frac{\partial L}{\partial f} \right) dx + \frac{\partial L}{\partial f} \eta \bigg|_{x_1}^{x_2}$$

• Hence
$$\int_{x_1}^{x_2} \eta \left(\frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right) dx = 0$$

CS551

• Now we have

$$\int_{x_1}^{x_2} \frac{dL}{d\varepsilon} \Big|_{\varepsilon=0} dx = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f} \eta' \right) dx \\ = \int_{x_1}^{x_2} \left(\frac{\partial L}{\partial f} \eta - \eta \frac{d}{dx} \frac{\partial L}{\partial f} \right) dx + \frac{\partial L}{\partial f} \eta \Big|_{x_1}^{x_2}$$

• Hence
$$\int_{x_1}^{x_2} \eta \left(\frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f} \right) dx = 0$$

• Euler-Lagrange equation $\frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f} = 0$

• Let us consider distance between two points A[y] =

$$A[y] = \int_{x_1} \sqrt{1 + [y'(x)]^2} \, dx$$

rX2

•
$$y'(x) = \frac{dy}{dx}$$
, $y_1 = f(x_1)$, $y_2 = f(x_2)$

• Let us consider distance between two points $A[y] = \int_{x_1}^{x_2} \sqrt{1 + [y'(x)]^2} \, dx$

•
$$y'(x) = \frac{dy}{dx}$$
, $y_1 = f(x_1)$, $y_2 = f(x_2)$
• We have, $\frac{\partial L}{\partial f} - \frac{d}{dx}\frac{\partial L}{\partial f} = 0$ where $L = \sqrt{1 + [f'(x)]^2}$

• Let us consider distance between two points $A[y] = \int_{-\infty}^{\infty} \sqrt{1 + [y'(x)]^2} dx$

•
$$y'(x) = \frac{dy}{dx}$$
, $y_1 = f(x_1)$, $y_2 = f(x_2)$
• We have, $\frac{\partial L}{\partial f} - \frac{d}{dx}\frac{\partial L}{\partial f} = 0$ where $L = \sqrt{1 + [f(x)]^2}$

• As *f* does not appear explicitly in *L*, hence $\frac{d}{dx}\frac{\partial L}{\partial f} = 0$

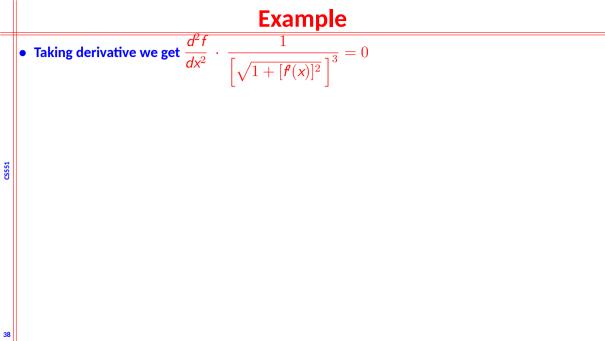
S551

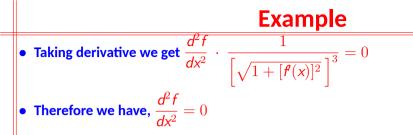
• Let us consider distance between two points $A[y] = \int_{-\infty}^{\infty} \sqrt{1 + [y'(x)]^2} dx$

•
$$y'(x) = \frac{dy}{dx}$$
, $y_1 = f(x_1)$, $y_2 = f(x_2)$
• We have, $\frac{\partial L}{\partial f} - \frac{d}{dx}\frac{\partial L}{\partial f} = 0$ where $L = \sqrt{1 + [f(x)]^2}$

- As f does not appear explicitly in L, hence $\frac{d}{dx}\frac{\partial L}{\partial f} = 0$
- Now we have, $\frac{d}{dx} \frac{f(x)}{\sqrt{1 + [f(x)]^2}} = 0$

CS551





• Taking derivative we get $\frac{d^2 f}{dx^2} \cdot \frac{1}{\left[\sqrt{1 + [f'(x)]^2}\right]^3} = 0$ • Therefore we have, $\frac{d^2 f}{dx^2} = 0$ • Hence we have f(x) = mx + b with $m = \frac{y_2 - y_1}{x_2 - x_1}$ and $b = \frac{x_2y_1 - x_1y_2}{x_2 - x_1}$